首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SARS-CoV grows in a variety of tissues that express its receptor, although the mechanism for high replication in the lungs and severe respiratory illness is not well understood. We recently showed that elastase enhances SARS-CoV infection in cultured cells, which suggests that SARS development may be due to elastase-mediated, enhanced SARS-CoV infection in the lungs. To explore this possibility, we examined whether co-infection of mice with SARS-CoV and Pp, a low-pathogenic bacterium which elicits elastase production in the lungs, induces exacerbation of pneumonia. Mice co-infected with SARS-CoV and Pp developed severe respiratory disease with extensive weight loss, resulting in a 33~90% mortality rate. Mice with exacerbated pneumonia showed enhanced virus infection in the lungs and histopathological lesions similar to those found in human SARS cases. Intranasal administration of LPS, another elastase inducer, showed an effect similar to that of Pp infection. Thus, this study shows that exacerbated pneumonia in mice results from co-infection with SARS-CoV and a respiratory bacterium that induces elastase production in the lungs, suggesting a possible role for elastase in the exacerbation of pneumonia.  相似文献   

2.

Abstract

Asthma is a syndrome of chronic bronchial inflammation and airway remodelling. Initially, asthma has been categorized into atopic and nonatopic types, based on antigen-specific IgE levels. Moreover, recently, asthma has been classified into different endotypes based on its pathophysiology, leading to the selection of the most optimal and effective therapies. Although T helper cell type 2 (Th2) cytokines were proven to play critical roles in atopic asthma, IL-17A has been reported to be involved in severe refractory asthma.

Patients and methods

In this study, we measured the levels of 24 cytokines/chemokines in the sera of healthy controls (HCs) (n = 34) and patients with asthma (n = 77), that were compared among patient groups with different disease activities and characteristics.

Results

The serum levels of nine cytokines were significantly higher in patients with asthma than in HCs, and the levels of IL-17A and SCF were significantly different between uncontrolled and well-controlled patient groups (p = 0.003). The IL-17A levels were significantly correlated with those of IL-4, IL-25, IL-10, and IFN-γ in patients with uncontrolled asthma, and the patients with the highest levels of all the above cytokines were refractory to high-dose of inhaled corticosteroid therapy and have a history of acute exacerbation within 1 year, requiring systemic steroid therapy.

Discussion

This study examines the profiles of upregulation and downregulation of various cytokines and chemokines in relation to asthmatic control status. IL-17A was significantly upregulated in patients with the uncontrolled and refractory status. Therefore, IL-17A may play important roles in asthmatic exacerbation, and its high level, in combination with upregulated Th2 and other cytokines, may indicate the refractory endotype of asthma.
  相似文献   

3.
In vitro and in vivo studies, in both animal models and human asthmatics, have implicated IL-4 as an important inflammatory mediator in asthma. In a murine asthma model, we examined the anti-inflammatory activities of soluble IL-4R (sIL-4R). In this model, mice sensitized to OVA by i.p. and intranasal (i.n.) routes are challenged with the allergen by i.n. administration. The OVA challenge elicits an eosinophil infiltration into the lungs, with widespread mucus occlusion of the airways, and results in bronchial hyperreactivity. sIL-4R (0.1-100 microgram) was administered by either i.n. or i.p. routes before OVA challenge in OVA-sensitized mice. Both blood and bronchoalveolar lavage fluid levels of sIL-4R were significantly elevated compared with controls by i.n. delivery of 100 microgram sIL-4R; i.p. delivery of 100 microgram sIL-4R only raised blood levels of sIL-4R. The i.n. administration of 100 microgram sIL-4R before allergen challenge significantly reduced late phase pulmonary inflammation, blocking airway eosinophil infiltration, VCAM-1 expression, and mucus hypersecretion. In contrast, i.p. delivery of 100 microgram sIL-4R inhibited only the influx of eosinophils into the lungs, but not airway mucus release. Furthermore, sIL-4R treatment by either i.n. or i.p. routes did not reduce airway hyperreactivity in response to methacholine challenge. Thus, elevating airway levels of sIL-4R through the administration of exogenous sIL-4R is effective in blocking the late phase pulmonary inflammation that occurs in this murine allergen-challenge asthma model. These results suggest that sIL-4R may have beneficial anti-inflammatory effects in asthmatic patients.  相似文献   

4.
Eotaxin-1/CCL11, eotaxin-2/CCL24, and eotaxin-3/CCL26 bind specifically and exclusively to CC chemokine receptor (CCR) 3, which is a potential therapeutic target in treating the peribronchial eosinophilia associated with allergic airway diseases. Bronchial epithelial cells represent an important source of chemokines, and thus we investigated in vitro and in vivo expression of eotaxin-2 and eotaxin-3 in bronchial epithelial cells in comparison with that of eotaxin-1. Immunohistochemistry showed increased expression of both eotaxin-2 and eotaxin-3 in addition to eotaxin-1 in asthmatics. Considerable amounts of eotaxins were secreted by bronchial epithelial lineage. As with eotaxin-1 production, generation of eotaxin-2 and eotaxin-3 by bronchial epithelial cells was up-regulated by IL-4 and IL-13, and attenuated by IFN-gamma and glucocorticoids. In addition to eotaxin-1 expression, but also eotaxin-2 and eotaxin-3 expression in the bronchial epithelium should be taken into consideration when developing the therapeutic strategies to treat eosinophilic airway diseases.  相似文献   

5.
BACKGROUND: Allergic asthma strongly correlates with airway inflammation caused by cytokines secreted by allergen-specific type-2 T helper (Th2) cells, but the immunologic regulation of cell function is yet to be acquired. Further, IL-10 has been found to exert both antiinflammatory and immunoregulatory activities. This study aimed to elucidate the therapeutic effects of IL-10 administration via adenovirus-mediated gene delivery on airway inflammation in the ovalbumin (OVA)-induced murine model of asthma. METHODS: BALB/c mice were sensitized by intraperitoneal injections with OVA and challenged by nebulized OVA. The sensitized mice were given an intratracheal delivery of adenoviral vector expressing the murine IL-10 gene (AdIL-10), or mock adenoviral vector 4 days before the inhalation challenge of the OVA. Inflammatory parameters, such as the development of airway hyper-responsiveness (AHR), bronchial lavage fluid eosinophils, and chemokines were assayed. RESULTS: Intratracheal administration of AdIL-10 could efficiently inhibit antigen-induced AHR and significantly decrease the number of eosinophils and neutrophils in the bronchoalveolar lavage fluid of OVA-sensitized and challenged mice during the effector phase. CONCLUSIONS: Our data showed that the intratracheal transfer of the IL-10 gene could affect the recruitment of inflammatory cells during the challenge phase in a way that would result in the inhibition of airway inflammation. These findings suggest that the development of an immunoregulatory strategy based on IL-10 might shed light on more effective treatment.  相似文献   

6.
Leucocytes are essential in healing wounds and are predominantly involved in the inflammatory and granulation stages of wound repair. Eosinophils are granulocytic leucocytes and are specifically regulated by interleukin-5 (IL-5), a cytokine produced by T helper 2 (Th2) cells. To characterize more clearly the role of the IL-5 and eosinophils in the wound healing process, IL-5-overexpressing and IL-5-deficient mice were used as models of eosinophilia and eosinophil depletion, respectively. Our results reveal a significantly altered inflammatory response between IL-5-overexpressing and IL-5 knockout mice post-wounding. Healing was significantly delayed in IL-5-overexpressing mice with wounds gaping wider and exhibiting impaired re-epithelialization. A delay in collagen deposition was observed suggesting a direct effect on matrix synthesis. A significant increase in inflammatory cell infiltration, particularly eosinophils and CD4(+) cells, one of the main cell types which secrete IL-5, was observed in IL-5-overexpressing mice wounds suggesting that one of the main roles of IL-5 in wound repair may be to promote the infiltration of eosinophils into healing wounds. Healing is delayed in IL-5-overexpressing mice and this corresponds to significantly increased levels of eosinophils and CD4(+) cells within the wound site that may contribute to and exacerbate the inflammatory response, resulting in detrimental wound repair.  相似文献   

7.
Chae SC  Park YR  Oh GJ  Lee JH  Chung HT 《Immunogenetics》2005,56(10):760-764
The eotaxin gene family (eotaxin, eotaxin-2 and eotaxin-3) has been implicated in the recruitment of eosinophils, basophiles and Th2 lymphocytes that are central aspects of allergic diseases. To determine whether single-nucleotide polymorphisms (SNPs) of the eotaxin-2 and eotaxin-3 genes are associated with susceptibility to allergic rhinitis, we scanned 178 allergic rhinitis patients and 281 controls without allergic rhinitis using the direct sequencing and single-base extension (SBE) methods. We also calculated the haplotype frequencies between +179T>C and +275C>T of eotaxin-2 and +2497T>G of eotaxin-3 in both controls and allergic rhinitis patients. The haplotype frequency between controls and allergic rhinitis patients was suggestively associated (P=0.0001). The genotype frequencies of eotaxin-3 +2497T>G in allergic rhinitis patients were suggestively different from those in non-allergic rhinitis controls (P=<0.0007). Our results strongly suggest that the SNP of eotaxin-3 might be associated with susceptibility to allergic rhinitis.  相似文献   

8.
The cellular and molecular mechanisms involved in the airway hyperresponsiveness (AHR) of patients with allergic asthma remain unclear. A role for Th2 inflammatory cells was suggested based on murine asthma models. No direct evidence exists on the role of these cells in human asthma. The development of a mouse-human chimera might be useful, allowing the in vivo study of the components of the human immune system relevant to asthma. We investigated the role of allergen-reactive T lymphocytes in a human-mouse SCID model. SCID mice were reconstituted intratracheally with human PBMC from healthy, nonallergic, nonasthmatic donors and exposed to an aerosol of house dust mite allergen after i.p. injection with Dermatophagoides pteronyssinus I Ag and alum. The donor T lymphocytes had a Th1 cytokine phenotype. The reconstituted and allergen-challenged mice developed AHR to carbachol. The mouse airways and lungs were infiltrated with human T lymphocytes. No eosinophils or increases in human IgE were observed. The intrapulmonary human T lymphocytes demonstrated an increase in intracytoplasmic IL-4 and IL-5 and a decrease in IFN-gamma after exposure to allergen adjuvant. Antagonizing human IL-4/IL-13 or IL-5 resulted in a normalization of the airway responsiveness, despite a sustained intracellular Th2 cytokine production. These results provide evidence that the activated human allergen-reactive Th2 cells producing IL-4 or IL-5 are pivotal in the induction of AHR, whereas no critical role for eosinophils or IgE could be demonstrated. They also demonstrate that human allergen-specific Th1 lymphocytes can be driven to a Th2 phenotype.  相似文献   

9.
Respiratory system resistance (R) and elastance (E) are commonly estimated by fitting the linear equation of motion P = EV + RV + P0 (Eq. 1) to measurements of respiratory pressure (P), lung volume (V), and flow (V). However, the respiratory system is unlikely to behave linearly under many circumstances. We determined the importance of respiratory system nonlinearities in two groups of mechanically ventilated Balb/c mice [controls and mice with allergically inflamed airways (ova/ova)], by assessing the impact of the addition of nonlinear terms (E2V2 and R2V(V)) on the goodness of model fit seen with Eq. 1. Significant improvement in fit (51.85 +/- 4.19%) was only seen in the ova/ova mice during bronchoconstriction when the E2V2 alone was added. An improvement was also observed with addition of the E2V2 term in mice with both low and high lung volumes ventilated at baseline, suggesting a volume-dependent nonlinearity of E. We speculate that airway closure in the constricted ova/ova mice accentuated the volume-dependent nonlinearity by decreasing lung volume and overdistending the remaining lung.  相似文献   

10.
Asthma is a chronic inflammatory disease of the airways characterized by airway remodeling, which includes changes in the extracellular matrix (ECM). However the role of the ECM in mediating these changes is poorly understood. Hyaluronan (HA), a major component of the ECM, has been implicated in asthma as well as in many other biological processes. Our study investigates the processes involved in HA synthesis, deposition, localization and degradation during an acute and chronic murine model of ovalbumin (OVA)-induced allergic pulmonary inflammation. Mice were sensitized, challenged to OVA and sacrificed at various time points during an 8-week challenge protocol. Bronchoalveolar lavage (BAL) fluids, blood, and lung tissue were collected for study. RNA, HA, protein and histopathology were analyzed. Analyses of lung sections and BAL fluids revealed an early deposition and an increase in HA levels within 24 h of antigen exposure. HA levels peaked at day 8 in BAL, while inflammatory cell recovery peaked at day 6. Hyaluronan synthase (HAS)1 and HAS2 on RNA levels peaked within 2 h of antigen exposure, while hyaluronidase (HYAL)1 and HYAL2 on RNA levels decreased. Both inflammatory cell infiltrates and collagen deposition co-localized with HA deposition within the lungs. These data support a role for HA in the pathogenesis of inflammation and airway remodeling in a murine model of asthma. HA deposition appears largely due to up regulation of HAS1 and HAS2. In addition, HA appears to provide the scaffolding for inflammatory cell accumulation as well as for new collagen synthesis and deposition.  相似文献   

11.
Pulmonary eosinophilia, a hallmark pathologic feature of allergic lung disease, is regulated by interleukin-13 (IL-13) as well as the eotaxin chemokines, but the specific role of these cytokines and their cooperative interaction are only partially understood. First, we elucidated the essential role of IL-13 in the induction of the eotaxins by comparing IL-13 gene-targeted mice with wild type control mice by using an ovalbumin-induced model of allergic airway inflammation. Notably, ovalbumin-induced expressions of eotaxin-1 and eotaxin-2 mRNA in the lungs were almost completely dependent upon IL-13. Second, in order to address the specific role of eotaxin-2 in IL-13-induced pulmonary eosinophilia, we generated eotaxin-2 gene-deficient mice by homologous recombination. Notably, in contrast to observations made in eotaxin-1-deficient mice, eotaxin-2-deficient mice had normal base-line eosinophil levels in the hematopoietic tissues and gastrointestinal tract. However, following intratracheal IL-13 administration, eotaxin-2-deficient mice showed a profound reduction in airway eosinophilia compared with wild type mice. Most interestingly, the level of peribronchial lung tissue eosinophils in IL-13-treated eotaxin-2-deficient mice was indistinguishable from wild type mice. Furthermore, IL-13 lung transgenic mice genetically engineered to be deficient in eotaxin-2 had a marked reduction of luminal eosinophils. Mechanistic analysis identified IL13-induced eotaxin-2 expression by macrophages in a distinct lung compartment (luminal inflammatory cells) compared with eotaxin-1, which was expressed solely in the tissue. Taken together, these results demonstrate a cooperative mechanism between IL-13 and eotaxin-2. In particular, IL-13 mediates allergen-induced eotaxin-2 expression, and eotaxin-2 mediates IL-13-induced airway eosinophilia.  相似文献   

12.
Toxocariasis is a neglected disease that affects people around the world. Humans become infected by accidental ingestion of eggs containing Toxocara canis infective larvae, which upon reaching the intestine, hatch, penetrate the mucosa and migrate to various tissues such as liver, lungs and brain. Studies have indicated that Th2 response is the main immune defense mechanism against toxocariasis, however, there are still few studies related to this response, mainly the IL-33/ST2 pathway. Some studies have reported an increase in IL-33 during helminth infections, including T. canis. By binding to its ST2 receptor, IL-33 stimulating the Th2 polarized immune cell and cytokine responses. Thus, we aimed to investigate the role of the IL-33/ST2 pathway in the context of T. canis larval migration and the immunological and pathophysiological aspects of the infection in the liver, lungs and brain from Wild-Type (WT) BALB/c background and genetically deficient mice for the ST2 receptor (ST2-/-). The most important findings revealed that the IL-33/ST2 pathway is involved in eosinophilia, hepatic and cerebral parasitic burden, and induces the formation of granulomas related to tissue damage and pulmonary dysfunction. However, ST2-/- mice, the immune response was skewed to Th1/Th17 type than Th2, that enhanced the control of parasite burden related to IgG2a levels, tissue macrophages infiltration and reduced lung dysfunction. Collectively, our results demonstrate that the Th2 immune response triggered by IL-33/ST2 pathway mediates susceptibility to T. canis, related to parasitic burden, eosinophilia and granuloma formation in which consequently contributes to tissue inflammation and injury.  相似文献   

13.
目的:探讨IL-10治疗对哮喘鼠血清IL-5及IgE水平的影响.方法:制备20只小鼠哮喘模型,随机分为治疗组、哮喘组,前者使用IL-10治疗,后者未予治疗,用ELISA双抗体夹心法测定治疗组和哮喘组血清IL-5和IgE的水平.以10只健康小鼠为对照组.结果:与对照组比较,哮喘组IL-5和IgE水平较高,差异均有统计学意义(P<0.05);经IL-10治疗后,治疗组的血清IL-5、IgE的水平明显低于哮喘组水平,其差异有统计学意义(P<0.05);治疗组治疗后IL-5和和IgE检测值与正常组水平差异无统计学意义(p>0.05).结论:IL-10能够降低哮喘小鼠血清的IL-5和IgE水平.  相似文献   

14.
The severe acute respiratory syndrome (SARS), caused by a novel coronavirus (SARS-CoV), resulted in substantial morbidity, mortality, and economic losses during the 2003 epidemic. While SARS-CoV infection has not recurred to a significant extent since 2003, it still remains a potential threat. Understanding of SARS and development of therapeutic approaches have been hampered by the absence of an animal model that mimics the human disease and is reproducible. Here we show that transgenic mice that express the SARS-CoV receptor (human angiotensin-converting enzyme 2 [hACE2]) in airway and other epithelia develop a rapidly lethal infection after intranasal inoculation with a human strain of the virus. Infection begins in airway epithelia, with subsequent alveolar involvement and extrapulmonary virus spread to the brain. Infection results in macrophage and lymphocyte infiltration in the lungs and upregulation of proinflammatory cytokines and chemokines in both the lung and the brain. This model of lethal infection with SARS-CoV should be useful for studies of pathogenesis and for the development of antiviral therapies.  相似文献   

15.
蛋白酶活化受体-2的研究进展   总被引:3,自引:0,他引:3  
Niu QX  He SH 《生理科学进展》2003,34(4):373-375
蛋白酶活化受体(protease-activated receptors,PARs)属于G蛋白偶联受体家族成员,其N-末端被蛋白酶裂解后,可形成新的N-末端。新N-末端能够结合、激活自身受体。PAR-2是PARs的成员之一,其激活、灭活、脱敏、复敏、及其与信号转导途径的关系,尤其是与疾病(如呼吸道慢性炎症)的关系正倍受关注。  相似文献   

16.
Proteoglycans bearing keratan sulfate (KS), such as aggrecan, are components of the human cartilage extracellular matrix (ECM). However, the role of KS in influencing cartilage degradation associated with arthritis remains to be completely understood. KS side chains of the length found in human cartilage are not found in murine skeletal tissues. Using a murine model of inflammatory polyarthritis and cartilage explants exposed to interleukin-1α (IL-1α), we examined whether administering KS could influence intraarticular inflammation and cartilage degradation. Acute arthritis was induced by intravenous administration of an anti-type II collagen antibody cocktail, followed by an intraperitoneal injection of lipopolysaccharide. This treatment was followed by an intraperitoneal KS administration in half of the total mice to evaluate the therapeutic potential of KS for ameliorating arthritis. To investigate the therapeutic potential ex vivo, we examined cartilage fragility by measuring IL-1α-induced aggrecan release from cartilage explants treated with or without KS. Intraperitoneal KS administration ameliorated arthritis in DBA/1J mice. The aggrecan release induced by IL-1α was less in cartilage explants containing media with KS than in those without KS. Our data indicate that exogenous KS ameliorated arthritis in vivo and suppressed cartilage degradation ex vivo. KS may have important therapeutic potential in the treatment of inflammatory arthritis. The mechanism responsible for this requires further investigation, but KS may become a novel therapeutic agent for treating inflammatory diseases such as rheumatoid arthritis.  相似文献   

17.
18.
Exaggerated levels of IL-13 and leukotriene (LT) pathway activation frequently coexist at sites of Th2 inflammation and in tissue fibrotic responses. However, the relationship(s) between the IL-13 and LTs in these responses have not been defined. We hypothesized that the 5-lipoxygenase (5-LO) pathway of LT metabolism plays an important role in the pathogenesis of IL-13-induced chronic inflammation and remodeling. To test this hypothesis, we evaluated the effects of IL-13 on components of the 5-LO metabolic and activation pathways. We also compared the effects of transgenic IL-13 in C57BL/6 mice with wild-type and null 5-LO genetic loci. These studies demonstrate that IL-13 increases the levels of mRNA encoding cytosolic phospholipase A(2), LTA(4) hydrolase, and 5-LO-activating protein without altering the expression of 5-LO, LTC(4) synthase, LTB(4) receptors 1 and 2, and cysteinyl-LT receptors 1 and 2. They also demonstrate that this activation is associated with the enhanced accumulation of LTB(4) but not of cysteinyl-LTs. Furthermore, they demonstrate that this stimulation plays a critical role in the pathogenesis of IL-13-induced inflammation, tissue fibrosis, and respiratory failure-induced death while inhibiting alveolar remodeling. Lastly, mechanistic insights are provided by demonstrating that IL-13-induced 5-LO activation is required for optimal stimulation and activation of TGF-beta(1) and the inhibition of matrix metalloproteinase-12. When viewed in combination, these studies demonstrate that 5-LO plays an important role in IL-13-induced inflammation and remodeling.  相似文献   

19.
IL-15, a pleiotropic cytokine, is involved in the inflammatory responses in various infectious and autoimmune diseases. We have recently constructed IL-15-transgenic (Tg) mice, which have an increased number of memory-type CD8+ T cells in the peripheral lymphoid tissues. In the present study, we found that eosinophilia and Th2-type cytokine production in the airway were severely attenuated in OVA-sensitized IL-15-Tg mice following OVA inhalation. IL-15-Tg mice preferentially developed Tc1 responses mediated by CD8+ T cells after OVA sensitization, and in vivo depletion of CD8+ T cells by anti-CD8 mAb aggravated the allergic airway inflammation in IL-15-Tg mice following OVA inhalation. Adoptive transfer of CD8+ T cells from OVA-sensitized IL-15-Tg mice into normal mice before OVA sensitization suppressed Th2 response to OVA in the normal mice. These results suggest that overexpression of IL-15 in vivo suppresses Th2-mediated-allergic airway response via induction of CD8+ T cell-mediated Tc1 response.  相似文献   

20.
Protein arginine methyltransferases (PRMTs), catalyzing methylation of both histones and other cellular proteins, have emerged as key regulators of various cellular processes. This study aimed to identify key PRMTs involved in Ag-induced pulmonary inflammation (AIPI), a rat model for asthma, and to explore the role of PRMT1 in the IL-4-induced eosinophil infiltration process. E3 rats were i.p. sensitized with OVA/alum and intranasally challenged with OVA to induce AIPI. The expressions of PRMT1-6, eotaxin-1, and CCR3 in lungs were screened by real-time quantitative PCR. Arginine methyltransferase inhibitor 1 (AMI-1, a pan-PRMT inhibitor) and small interfering RNA-PRMT1 were used to interrupt the function of PRMT1 in A549 cells. In addition, AMI-1 was administrated intranasally to AIPI rats to observe the effects on inflammatory parameters. The results showed that PRMT1 expression was mainly expressed in bronchus and alveolus epithelium and significantly upregulated in lungs from AIPI rats. The inhibition of PRMTs by AMI-1 and the knockdown of PRMT1 expression were able to downregulate the expressions of eotaxin-1 and CCR3 with the IL-4 stimulation in the epithelial cells. Furthermore, AMI-1 administration to AIPI rats can also ameliorate pulmonary inflammation, reduce IL-4 production and humoral immune response, and abrogate eosinophil infiltration into the lungs. In summary, PRMT1 expression is upregulated in AIPI rat lungs and can be stimulated by IL-4. Intervention of PRMT1 activity can abrogate IL-4-dependent eotaxin-1 production to influence the pulmonary inflammation with eosinophil infiltration. The findings may provide experimental evidence that PRMT1 plays an important role in asthma pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号