首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin 2(IL-2) is known to stimulate the progression of activated T cells from G1 through the rest of the cell cycle. We have demonstrated that addition of purified recombinant human IL-2 (rIL-2) to fresh normal human peripheral blood mononuclear cells (PBM), which were IL-2 receptor (Tac) negative by FACS analysis, stimulated marked proliferation of the PBM. IL-2-induced proliferation was also observed with umbilical cord blood mononuclear cells. Monocyte depletion of PBM resulted in a marked reduction of rIL-2-induced proliferative response which could be restored by adding back autologous irradiated monocytes but not by interleukin 1. The T cells preincubated with rIL-2 showed a five to six times enhanced autologous mixed-lymphocyte reaction (AMLR) compared to controls. The rIL-2-induced proliferative response of PBM was inhibited in a concentration-dependent fashion by preincubation of PBM with an anti-HLA-DR framework monoclonal antibody. The proliferating cells were shown by two-color flow cytometric analysis to be primarily Leu-1+ and Leu-4+ T cells (both leu-3+ and Leu-2+ subsets); however, 6 to 19% of responding cells had surface markers for B cells or NK cells. The data demonstrate that rIL-2 can induce proliferation of "resting" human T cells. The phenomenon may be related to a monocyte-dependent AMLR which induces IL-2 receptors and IL-2 responsiveness in a subset of T cells.  相似文献   

2.
It has been demonstrated that the antinociception induced by i.t. or i.c.v. administration of endomorphins is mediated through mu-opioid receptors. Moreover, though endomorphins do not have appreciable affinity for kappa-opioid receptors, pretreatment with the kappa-opioid receptor antagonist nor-binaltorphimine markedly blocks the antinociception induced by i.c.v.- or i.t.-injected endomorphin-2, but not endomorphin-1. These evidences propose the hypothesis that endomorphin-2 may initially stimulate the mu-opioid receptors, which subsequently induces the release of dynorphins acting on kappa-opioid receptors to produce antinociception. The present study was performed to determine whether the release of dynorphins by i.c.v.-administered endomorphin-2 is mediated through mu-opioid receptors for producing antinociception. Intracerebroventricular pretreatment with an antiserum against dynorphin A, but not dynorphin B or alpha-neo-endorphin, and s.c. pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine dose-dependently attenuated the antinociception induced by i.c.v.-administered endomorphin-2, but not endomorphin-1 and DAMGO. The attenuation of endomorphin-2-induced antinociception by pretreatment with antiserum against dynorphin A or nor-binaltorphimine was dose-dependently eliminated by additional s.c. pretreatment with a selective mu-opioid receptor antagonist beta-funaltrexamine or a selective mu(1)-opioid receptor antagonist naloxonazine at ultra low doses, which are inactive against mu-opioid receptor agonists in antinociception, suggesting that endomorphin-2 stimulates distinct subclass of mu(1)-opioid receptor that induces the release of dynorphin A acting on kappa-opioid receptors in the brain. It concludes that the antinociception induced by supraspinally administered endomorphin-2 is in part mediated through the release of endogenous kappa-opioid peptide dynorphin A, which is caused by the stimulation of distinct subclass of mu(1)-opioid receptor.  相似文献   

3.
Liu S  Xu C  Li G  Liu H  Xie J  Tu G  Peng H  Qiu S  Liang S 《Neurochemistry international》2012,60(6):565-572
Neuropathic pain can arise from a lesion affecting the peripheral nervous system. Selective P2X(3) and P2X(2/3) receptors' antagonists effectively reduce neuropathic pain. VEGF inhibitors are effective for pain relief. The present study investigated the effects of Vatalanib (VEGF receptor-2 (VEGFR-2) inhibitor) on the neuropathic pain to address the interaction of VEGFR-2 and P2X(2/3) receptor in dorsal root ganglia of chronic constriction injury (CCI) rats. Neuropathic pain symptoms following CCI are similar to most peripheral lesions as assessed by the Neuropathic Pain Symptom Inventory. Sprague-Dawley rats were randomly divided into sham group, CCI group and CCI rats treated with Vatalanib group. Mechanical withdrawal threshold and thermal withdrawal latency were measured. Co-expression of VEGFR-2 and P2X(2) or P2X(3) in L4-6 dorsal root ganglia (DRG) was detected by double-label immunofluorescence. The modulation effect of VEGF on P2X(2/3) receptor agonist-activated currents in freshly isolated DRG neurons of rats both of sham and CCI rats was recorded by whole-cell patch-clamp technique. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in CCI group were lower than those in sham group (p<0.05). MWT and TWL in CCI rats treated with Vatalanib group were increased compared with those in CCI group (p<0.05). VEGFR-2 and P2X(2) or P2X(3) receptors were co-expressed in the cytoplasm and surface membranes of DRG. The co-expression of VEGFR-2 and P2X(2) or P2X(3) receptor in CCI group exhibited more intense staining than those in sham group and CCI rats treated with Vatalanib group, respectively. VEGF enhanced the amplitude of ATP and α,β-meATP -activated currents of both sham and CCI rats. Increment effects of VEGF on ATP and α,β-meATP -activated currents in CCI rats were higher than those in sham rats. Both ATP (100 μM) and α,β-meATP (10 μM)- activated currents enhanced by VEGF ( 1nM) were significantly blocked by Vatalanib (1 μM, an inhibitor of VEGF receptors). The stain values of VEGFR-2, P2X(2) and P2X(3) protein expression in L4/5 DRG of CCI treated with Vatalanib group were significantly decreased compared with those in CCI group (p<0.01). Vatalanib can alleviate chronic neuropathic pain by decreasing the activation of VEGF on VEGFR-2 and the positive interaction between the up-regulated VEGFR-2 and P2X(2/3) receptors in the neuropathic pain signaling.  相似文献   

4.
Heroin produced antinociception in the tail flick test through mu receptors in the brain of ICR and CD-1 mice, a response inhibited by 3-O-methylnaltrexone. Tolerance to morphine was produced by subcutaneous morphine pellet implantation. By the third day, the heroin response was produced through delta opioid receptors. The response was inhibited by simultaneous intracerebroventricular (i.c. v.) administration of naltrindole, a delta opioid receptor antagonist. More specifically, delta1 rather than delta2 receptors were involved because 7-benzylidenenaltrexone, a delta1 receptor antagonist, inhibited but naltriben, a delta2 antagonist, did not. Also, antinociception produced by i.c.v. heroin was inhibited by intrathecal administration of bicuculline and picrotoxin consistent with the concept that delta1 receptors in the brain mediated the antinociceptive response through descending neuronal pathways to the spinal cord to activate GABAA and GABAB receptors rather than spinal alpha2-adrenergic and serotonergic receptors activated originally by the mu agonist action in naive mice. The mu response of 6-monoacetylmorphine, a metabolite of heroin, was changed by morphine pellet implantation to a delta2 response (inhibited by naltriben but not 7-benzylidenenaltrexone). The agonist action of morphine in these morphine-tolerant mice remained mu. Thus, the opioid receptor selectivity of heroin and 6-monoacetylmorphine in the brain is changed by production of tolerance to morphine. Such a change explains how morphine tolerant mice are not cross-tolerant to heroin.  相似文献   

5.
ATP facilitates initiation and transmission of the neuropathic pain at the dorsal root ganglion (DRG) level via the P2X receptors, especially the subtype P2X(3). Lappaconitine (LA) is an active principle isolated from Chinese herbal medicine and possesses analgesic effect. The aim of this study was to investigate the effect of LA on chronic constriction injury (CCI)-induced neuropathic pain mediated by P2X(3) receptor in the DRG neurons. In the presence of CCI and/or LA, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured and P2X(3) receptor expression in the DRG neurons was evaluated by immunohistochemistry and Western blotting. Following intrathecal administration of P2X(3) receptor oligonucleotide, the effect of LA on pain thresholds was assessed. Furthermore, the effect of LA on the P2X(3) receptor agonists ATP- and α,β-meATP-induced inward currents (I(ATP) and I(α,β-meATP)) in the acutely dissociated rat DRG neurons was investigated by whole cell patch-clamp. The results included: (1) There showed reduction of pain thresholds, enhancement of I(ATP) and I(α,β-meATP) and up-regulation of P2X(3) receptor expression in rat DRG neurons when neuropathic pain occurred. (2) In the presence of LA, the decreased pain thresholds, the up-regulated P2X(3) receptor expression and the enhanced I(ATP) and I(α,β-meATP) were reversible in the CCI rats. (3) The down-regulated P2X(3) receptor expression with pretreatment of P2X(3) receptor antisense oligonucleotide significantly attenuated the analgesic effect of LA. These results indicate that the analgesic effect of LA involves decrease of expression and sensitization of the P2X(3) receptors of the rat DRG neurons following CCI.  相似文献   

6.
MicroRNAs (miRNAs) are reported as vital participators in the pathophysiological course of neuropathic pain. However, the underlying mechanisms of the functional roles of miRNAs in neuropathic pain are largely unknown. This study was designed to explore the potential role of miR‐150 in regulating the process of neuropathic pain in a rat model established by chronic sciatic nerve injury (CCI). Overexpression of miR‐150 greatly alleviated neuropathic pain development and reduced inflammatory cytokine expression, including COX‐2, interleukin IL‐6, and tumor necrosis factor (TNF)‐α in CCI rats. By bioinformatic analysis, 3′‐untranslated region (UTR) of Toll‐like receptor (TLR5) was predicted to be a target of miR‐150. TLR5 commonly serves as an important regulator of inflammation. Overexpression of miR‐150 significantly suppressed the expression of TLR5 in vitro and in vivo. Furthermore, upregulation of TLR5 decreased the miR‐150 expression and downregulation of TLR5 increased miR‐150, respectively. Overexpression of TLR5 significantly reversed the miR‐150‐induced suppressive effects on neuropathic pain. In conclusion, our current study indicates that miR‐150 may inhibit neuropathic pain development of CCI rats through inhibiting TLR5‐mediated neuroinflammation. Our findings suggest that miR‐150 may provide a novel therapeutic target for neuropathic pain treatment.  相似文献   

7.
Neuropathic pain caused by somatosensory nervous system dysfunction is a serious public health problem. Some long noncoding RNAs (lncRNAs) can participate in physiological processes involved in neuropathic pain. However, the effects of lncRNA DGCR5 in neuropathic pain have not been explored. Therefore, in our current study, we concentrated on the biological roles of DGCR5 in neuropathic pain. Here, it was observed that DGCR5 was significantly decreased in chronic sciatic nerve injury (CCI) rat models. DGCR5 overexpression was able to alleviate neuropathic pain development including mechanical and thermal hyperalgesia. In addition, the current understanding of miR-330-3p function in neuropathic pain remains largely incomplete. Here, we found that miR-330-3p was greatly increased in CCI rats and DGCR5 can modulate miR-330-3p expression negatively. Upregulation of DGCR5 repressed inflammation-correlated biomarkers including interleukin 6 (IL-6), tumor necrosis factor α, and IL-1β in CCI rats by sponging miR-330-3p. The negative correlation between DGCR5 and miR-330-3p was confirmed in our current study. Inhibition of miR-330-3p suppressed neuropathic pain progression by restraining neuroinflammation in vivo. In addition, PDCD4 was predicted as a downstream target of miR-330-3p. Furthermore, PDCD4 was significantly increased in CCI rats and DGCR5 regulated PDCD4 expression through sponging miR-330-3p in CCI rat models. Taken these together, it was implied that DGCR5/miR-330-3p/PDCD4 axis participated in neuropathic pain treatment.  相似文献   

8.
Narita M  Imai S  Itou Y  Yajima Y  Suzuki T 《Life sciences》2002,70(20):2341-2354
Fentanyl has been shown to be a potent analgesic with a lower propensity to produce tolerance and physical dependence in the clinical setting. The present study was designed to investigate the mechanisms of fentanyl- or morphine-induced antinociception at both supraspinal and spinal sites. In the mouse tail-flick test, the antinociceptive effects induced by both fentanyl and morphine were blocked by either the mu1-opioid receptor antagonist naloxonazine or the mu1/mu2-opioid receptor antagonist beta-funaltrexamine (beta-FNA) after s.c., i.c.v. or i.t. injection. In contrast, both fentanyl and morphine given i.c.v. or i.t. failed to produce antinociception in mu1-deficient CXBK mice. These findings indicate that like morphine, the antinociception induced by fentanyl may be mediated predominantly through mu1-opioid receptors at both supraspinal and spinal sites in mice. We also determined the ED50 values for s.c.-, i.c.v.- and i.t.-administered fentanyl- or morphine-induced antinociception in mice. The ED50 values for s.c.-, i.c.v.- and i.t.-administered fentanyl-induced antinociception were 73.7, 18.5 and 1.2-fold lower than that of morphine, respectively. The present data clearly suggest the usefulness of peripheral treatment with fentanyl for the control of pain.  相似文献   

9.
Neuropathic pain has been reported as a type of chronic pain due to the primary dysfunction of the somatosensory nervous system. It is the most serious types of chronic pain, which can lead to a significant public health burden. But, the understanding of the cellular and molecular pathogenesis of neuropathic pain is barely complete. Long noncoding RNAs (lncRNAs) have recently been regarded as modulators of neuronal functions. Growing studies have indicated lncRNAs can exert crucial roles in the development of neuropathic pain. Therefore, our present study focused on the potential role of the lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) in neuropathic pain progression. Firstly, a chronic constrictive injury (CCI) rat model was built. CRNDE was obviously increased in CCI rats. Interestingly, overexpression of CRNDE enhanced neuropathic pain behaviors. Neuroinflammation was induced by CRNDE and as demonstrated, interleukin-10 (IL-10), IL-1, IL-6, and tumor necrosis factor-α (TNF-α) protein levels in CCI rats were activated by LV-CRNDE. For another, miR-136 was obviously reduced in CCI rats. Previously, it is indicated that miR-136 participates in the spinal cord injury via an inflammation in a rat model. Here, firstly, we verified miR-136 could serve as CRNDE target. Loss of miR-136 triggered neuropathic pain remarkably via the neuroinflammation activation. Additionally, IL6R was indicated as a target of miR-136 and miR-136 regulated its expression. Subsequently, we confirmed that CRNDE could induce interleukin 6 receptor (IL6R) expression positively. Overall, it was implied that CRNDE promoted neuropathic pain progression via modulating miR-136/IL6R axis in CCI rat models.  相似文献   

10.
11.
Although acupuncture is widely used to manage pain, it remains highly controversial, largely due to the lack of a clear mechanism for its benefits. Here, we investigated the role of IL-33, a novel interleukin (IL)-1 family member, and its receptor ST2 in the analgesic effects of electroacupuncture (EA) on formalin-induced inflammatory pain. The results showed that 1) EA stimulation of ipsilateral Zusanli (ST 36) and Yanglingquan (GB 34) acupoints for 30 min remarkably suppressed the two phases of formalin-induced spontaneous pain; 2) subcutaneous or intrathecal administration of recombinant IL-33 (rIL-33) significantly inhibited the analgesic effect of EA, whereas the ST2 antibody potentiated EA analgesia in formalin mice; 3) EA treatment decreased the up-regulation of IL-33 and ST2 protein following formalin injection; and 4) the suppression of the formalin-induced expression of spinal phosphorylated ERK and JNK induced by EA treatment was significantly attenuated following subcutaneous rIL-33 delivery, and was further decreased by the ST2 antibody. These data suggest that EA alleviates formalin-induced inflammatory pain, at least partially, by inhibiting of spinal IL-33/ST2 signaling and the downstream ERK and JNK pathways.  相似文献   

12.
The antinociceptive effect of Tyr-d-Arg-Phe-Sar (TAPS) at the spinal level was characterized with the mouse tail-flick test. Intrathecal (i.t.) administration of TAPS produced a dose-dependent antinociception. The antinociception induced by TAPS was completely blocked by i.t. pretreatment with the mu-opioid receptor antagonist beta-funaltrexamine, the mu(1)-opioid receptor antagonist naloxonazine or the kappa-opioid receptor antagonist nor-binaltorphimine, but not with the delta-opioid receptor antagonist naltrindole. Moreover, TAPS-induced antinociception was dose-dependently attenuated by i.t. pretreatment with an antiserum against dynorphin B, but not against dynorphin A, alpha-neo-endorphin, [Met(5)]enkephalin, or [Leu(5)]enkephalin. In mice lacking prodynorphin, TAPS-induced antinociception was significantly reduced compared to that in wild-type mice. These results suggest that TAPS mainly stimulates mu(1)-opioid receptors, which subsequently induce the release of dynorphin B, which then acts on kappa-opioid receptors to produce antinociception.  相似文献   

13.
Treatment of rat glomerular mesangial cells with recombinant human interleukin 1 alpha (rIL-1 alpha), recombinant human interleukin 1 beta (rIL-1 beta) or recombinant human tumor necrosis factor (rTNF) induces prostaglandin E2 (PGE2) synthesis and the release of a phospholipase A2 (PLA2) activity. rIL-1 beta is significantly more potent than rIL-1 alpha or rTNF in stimulating PGE2 as well as PLA2 release from mesangial cells. When given together, rTNF interacts in a synergistic fashion with rIL-1 alpha and rIL-1 beta to enhance both, PGE2 synthesis and PLA2 release. The released PLA2 has a neutral pH optimum and is calcium-dependent. Pretreatment of cells with actinomycin D or cycloheximide inhibits basal and cytokine-stimulated PGE2 and PLA2 release.  相似文献   

14.
Neuropathic pain, resulting from somatosensory nervous system dysfunction, remains a serious public health problem worldwide. microRNAs are involved in the physiological processes of neuropathic pain. However, the biological roles of miR-98 in neuropathic pain development have not been investigated. Therefore, in our current study, we focused on the effects of miR-98 in neuropathic pain. It was shown that miR-98 was significantly downregulated in chronic sciatic nerve injury (CCI) rat models. In addition, high mobility group A2 (HMGA2) was obviously upregulated in CCI rats. Overexpression of miR-98 inhibited neuropathic pain progression, including mechanical and thermal hyperalgesia. By a bioinformatics analysis, HMGA2 was predicted as a direct target of miR-98. The negative correlation between miR-98 and HMGA2 was validated in our present study. Furthermore, overexpression of miR-98 dramatically repressed HMGA2 protein and messenger RNA (mRNA) expression. Neuroinflammation participates in neural-immune interactions, which can contribute to the neuropathic pain development. Meanwhile, we found that inflammatory cytokine (interleukin [IL]-6, IL-1β, and COX-2) protein expression in rats infected with LV-miR-98 was greatly suppressed. Taking these results together, we concluded that miR-98 might depress neuropathic pain development through modulating HMGA2.  相似文献   

15.
探讨神经肽Y(neruopride Y, NPY) 在SD大鼠中脑导水管周围灰质 (periaqueductal grey, PAG) 对伤害性刺激反应的作用.应用热板和机械压力实验法,以大鼠后爪缩爪瓜潜伏期(paw withdrawal latency, PWL) 为痕阈指标, 观察PAG 内微量注射NPY对PWLs的影响.PAG内注射 0.05、0.1、 0.2 nmol NPY 均显著地增加慢性神经痛大鼠的双侧PWLs, 且呈量效关系.NPY引起的PWLs增加可被Y1受体拮抗剂和阿片剂所阻断.结果提示,在大鼠PAG 微量注射NPY可产生明显的镇痛作用.  相似文献   

16.
The effect of rIL-4 on CD69 antigen expression induced by rIL-2 or by rINF-alpha on human resting NK cells and CD3+, CD4-, CD8- T lymphocytes has been investigated. rIL-4 drastically inhibited CD69 antigen expression induced by rIL-2 in both cell types. In contrast, rIL-4 did not alter rINF-alpha-induced CD69 antigen expression. Consistent results were obtained evaluating the cytolytic activity of NK cells against the Raji target cell line: rINF-alpha-induced lytic activity was not inhibited by rIL-4, while rIL-2-induced lytic activity was drastically inhibited. Proliferative activity of NK cells induced by rIL-2, in contrast, was only slightly reduced by rIL-4. rIL-4 did not alter the expression of the beta chain of IL-2 receptor, evaluated in NK cells by indirect immunofluorescence. Expression of the alpha chain of IL-2 receptor could not be detected in NK cells by indirect immunofluorescence. It can therefore be suggested that the selective inhibitory effect of rIL-4 on rIL-2-induced activation of NK cells is not mediated by downregulation of alpha and beta chains of IL-2 receptor.  相似文献   

17.
18.
This study was performed to characterize the effect of microRNA‐101 (miR‐101) on the pain hypersensitivity in CCI rat models with the involvement of mitogen‐activated protein kinase phosphatase 1 (MKP‐1) in spinal cord microglial cells. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in the developed CCI models were determined to assess the hypersensitivity of rats to mechanical stimulation and thermal pain. To assess inflammation, the levels of interleukin (IL)‐1β, IL‐6 and tumour necrosis factor‐α (TNF‐α) in the spinal dorsal horns of CCI rats and lipopolysaccharide (LPS)‐activated microglial cells were examined. miR‐101 and MKP‐1 gain‐ and loss‐of‐function experiments were conducted in in vivo and in vitro settings to examine the roles of miR‐101 and MKP‐1 in CCI hypersensitivity and inflammation. The results showed that miR‐101 was highly expressed in the spinal dorsal horn and microglial cells of CCI rat models. Furthermore, overexpression of miR‐101 promoted the pain hypersensitivity in CCI rat models by reducing MWT and TWL. The overexpression of miR‐101 also promoted inflammation in LPS‐exposed microglial cells, as indicated by increased levels of IL‐1β, IL‐6 and TNF‐α. MiR‐101 was shown to target MKP‐1, inhibiting its expression. Moreover, miR‐101 promoted pain hypersensitivity in CCI rat models by inhibiting MKP‐1 expression and activating the mitogen‐activated protein kinase (MAPK) signalling pathway. Taken together, miR‐101 could potentially promote hypersensitivity and inflammatory response of microglial cells and aggravate neuropathic pain in CCI rat models by inhibiting MKP‐1 in the MAPK signalling pathway.  相似文献   

19.
Glutathione (GSH), the most prevalent intracellular non-protein thiol, plays an important role in the interleukin-2 (IL-2)-induced proliferative activity of normal and tumour cells expressing IL-2 receptor (IL-2R). In the present study, we investigate the effect of IL-2 on proliferation of the human melanoma A375 cell line, and the possible selective cytomodulation effect of this cytokine by l-2-oxothiazolidine-4-carboxylate (OTZ) on these melanoma cells and on human peripheral blood mononuclear cells (PBMCs). We found that recombinant IL-2 (rIL-2) significantly increased the proliferation rate of A375 melanoma cells, which was associated with an increase in GSH levels, the enhancement of IL-2Rα expression and the endogenous production of IL-2 in these tumour cells. In contrast, OTZ decreased GSH content and the proliferation rate of A375 cells, and abrogated the growth-promoting effects of rIL-2. Thus, compared to cells treated with rIL-2, pre-treatment with OTZ reduced IL-2Rα expression, and also decreased the consumption of rIL-2 and the endogenous secretion of IL-2 by these tumour cells. With regard to PBMCs, the combination of OTZ plus rIL-2 resulted in a more rapid and greater increase of IL-2Rα expression than rIL-2 alone, with the proliferation rate being similar in the first 24 h, but with a lower PBMC′ count found thereafter compared to rIL-2 treatment alone. These results suggest that OTZ plays a crucial role in obtaining a selective cytomodulation of rIL-2, enabling it to exert its growth-promoting effect on normal cells, but not on melanoma cells, thereby possibly improving biochemotherapy with rIL-2.  相似文献   

20.
Wang JZ 《生理学报》2004,56(1):79-82
探讨神经肽Y(neuropeptide Y,NPY)在SD大鼠中脑导水管周围灰质(periaqueductal grey,PAG)对伤害性刺激反应的作用。应用热板和机械压力实验法,以大鼠后爪缩爪反应潜伏期(paw withdrawal latency,PWL)为痛阈指标。观察PAG内微量注射NPY对PWLS的影响。PAG内注射0.05、0.1、0.2nmol NPY均显著地增加慢性神经痛大鼠的双侧PWLS,且呈量效关系。NPY引起的PWLs增加可被Y1受体拮抗剂和阿片受体拮抗剂所阻断。结果提示,在大鼠PAG微量注射NPY可产生明显的镇痛作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号