共查询到20条相似文献,搜索用时 0 毫秒
1.
Methylomonassp.GYJ3菌株中经DEAE-SepharoseCL-6B阴离子交换层析和SephacrylS300凝胶层析分离纯化出甲烷加氧酶羟基化酶组分.经HPLC分析,纯度大于90%,分子量为240kD,纯化倍数为3.9,比活为225nmol环氧丙烷每分钟毫克蛋白.SDS-PAGE表明,羟基化酶由三个亚基组成,亚基分子量为56、43、27kD.ICPAES测定羟基化酶的Fe含量为2.1molFe每摩尔蛋白.HPLC法用于甲烷单加氧酶羟基化酶组分的纯化,纯化的羟基化酶组分比活为541nmol(环氧丙烷)每分钟毫克蛋白,是两步LC法纯化的羟基化酶的两倍,Fe含量为3.78molFe每摩尔蛋白.催化性质研究表明羟基化酶能够被化学还原剂还原为还原态羟基化酶,还原态的羟基化酶单独存在时表现出MMO活性,说明它是MMO活性中心,天然态的羟基化酶单独存在时无MMO活性,加入粗酶液中MMO活性明显增加,说明GYJ3菌中MMO是一个复合酶系. 相似文献
2.
《Bioscience, biotechnology, and biochemistry》2013,77(5):736-740
A soluble methane monooxygenase (sMMO: EC 1.14.13.25) was purified from a type II obligate methanotroph, Methylocystis sp. M. Ion exchange chromatography elution separated the sMMO into three components, I, II, and III. Components II and III were purified to homogeneity and were essential for the sMMO activity. Components II and III had molecular masses of approximately 233,000 and 39,000, respectively. Component II consisted of three subunits with molecular masses of 55,000, 44,000, and 21,000, which appeared to be present in stoichiometric amounts, suggesting a (αβγ)2 configuration in the native protein. Component II contained 1–4 mol of iron and was considered to be a hydroxylase. Component III was a flavoprotein, which contained 1 mol of FAD as well as 1–2mol of iron. It catalyzed the reduction of K3Fe(CN)6 and 2,6-dichloroindophenol by NADH. Component I, which was partially purified and not essential for sMMO activity, stimulated the activity by about 11-fold. Its stimulation could be replaced by addition of Fe2+. The molecular mass of the partially purified component I was estimated to be from 35,000 to 40,000 based on gel filtration, which suggested the presence of a new type of regulatory protein of sMMO. 相似文献
3.
Metylomonassp.GYJ3菌的甲烷单加氧酶(MMO)粗酶提取液经DEAE-SepharoseCL-6B阴离子交换层析、SephadexG-100凝胶过滤层析和DEAE-TSKgelHPLC分离纯化出MMO还原酶组分.经HPLC分析,纯度大于95%,纯化倍数为4.4,加入至MMO羟基化酶和调节蛋白B的体系中表现比活为228nmol环氧丙烷每分钟毫克蛋白.SDS-PAGE电泳表明还原酶由一种亚基组成,分子量42kD.ICP-AES测定还原酶的Fe含量为1.83molFe每mol蛋白.UV-Vis光谱表明还原酶除280nm蛋白质特征峰外在460nm有最大吸收峰,且A280nm/A460nm为2.50,与其它黄素一铁硫蛋白相似,推测还原酶可能含一个FAD辅基和Fe2S2中心.在厌氧条件下,还原酶能够和NADH作用,UV-Vis光谱分析表明还原酶460nm处特征吸收峰消失,说明在MMO催化过程中还原酶接受NADH的电子.DEAE-SepharoseCL-6B阴离子交换层析分离出调节蛋白B,部分纯化的调节蛋白B的分子量大约在20kD,它能够提高MMO比活性40倍,MMO还原酶和调节蛋白B单独存在时不具有MMO 相似文献
4.
Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1 总被引:2,自引:8,他引:2 下载免费PDF全文
A methanotroph (strain 68-1), originally isolated from a trichloroethylene (TCE)-contaminated aquifer, was identified as the type I methanotroph Methylomonas methanica on the basis of intracytoplasmic membrane ultrastructure, phospholipid fatty acid profile, and 16S rRNA signature probe hybridization. Strain 68-1 was found to oxidize naphthalene and TCE via a soluble methane monooxygenase (sMMO) and thus becomes the first type I methanotroph known to be able to produce this enzyme. The specific whole-cell sMMO activity of 68-1, as measured by the naphthalene oxidation assay and by TCE biodegradation, was comparatively higher than sMMO activity levels in Methylosinus trichosporium OB3b grown in the same copper-free conditions. The maximal naphthalene oxidation rates of Methylomonas methanica 68-1 and Methylosinus trichosporium OB3b were 551 ± 27 and 321 ± 16 nmol h-1 mg of protein -1, respectively. The maximal TCE degradation rates of Methylomonas methanica 68-1 and Methylosinus trichosporium OB3b were 2,325 ± 260 and 995 ± 160 nmol h-1 mg of protein-1, respectively. The substrate affinity of 68-1 sMMO to naphthalene (Km, 70 ± 4 μM) and TCE (Km, 225 ± 13 μM), however, was comparatively lower than that of the sMMO of OB3b, which had affinities of 40 ± 3 and 126 ± 8 μM, respectively. Genomic DNA slot and Southern blot analyses with an sMMO gene probe from Methylosinus trichosporium OB3b showed that the sMMO genes of 68-1 have little genetic homology to those of OB3b. This result may indicate the evolutionary diversification of the sMMOs. 相似文献
5.
Soluble cytochromes from the marine methanotroph Methylomonas sp. strain A4. 总被引:2,自引:2,他引:0 下载免费PDF全文
Soluble c-type cytochromes are central to metabolism of C1 compounds in methylotrophic bacteria. In order to characterize the role of c-type cytochromes in methane-utilizing bacteria (methanotrophs), we have purified four different cytochromes, cytochromes c-554, c-553, c-552, and c-551, from the marine methanotroph Methylomonas sp. strain A4. The two major species, cytochromes c-554 and c-552, were monoheme cytochromes and accounted for 57 and 26%, respectively, of the soluble c-heme. The approximate molecular masses were 8,500 daltons (Da) (cytochrome c-554) and 14,000 Da (cytochrome c-552), and the isoelectric points were pH 6.4 and 4.7, respectively. Two possible diheme c-type cytochromes were also isolated in lesser amounts from Methylomonas sp. strain A4, cytochromes c-551 and c-553. These were 16,500 and 34,000 Da, respectively, and had isoelectric points at pH 4.75 and 4.8, respectively. Cytochrome c-551 accounted for 9% of the soluble c-heme, and cytochrome c-553 accounted for 8%. All four cytochromes differed in their oxidized versus reduced absorption maxima and their extinction coefficients. In addition, cytochromes c-554, c-552, and c-551 were shown to have different electron paramagnetic spectra and N-terminal amino acid sequences. None of the cytochromes showed significant activity with purified methanol dehydrogenase in vitro, but our data suggested that cytochrome c-552 is probably the in vivo electron acceptor for the methanol dehydrogenase. 相似文献
6.
7.
Shigematsu T Hanada S Eguchi M Kamagata Y Kanagawa T Kurane R 《Applied and environmental microbiology》1999,65(12):5198-5206
The soluble MMO (sMMO) gene clusters from group I methanotrophs were characterized. An 8.1-kb KpnI fragment from Methylomonas sp. strain KSWIII and a 7.5-kb SalI fragment from Methylomonas sp. strain KSPIII which contained the sMMO gene clusters were cloned and sequenced. The sequences of these two fragments were almost identical. The sMMO gene clusters in the fragment consisted of six open reading frames which were 52 to 79% similar to the corresponding genes of previously described sMMO gene clusters of the group II and group X methanotrophs. The phylogenetic analysis of the predicted amino acid sequences of sMMO demonstrated that the sMMOs from these strains were closer to that from M. capsulatus Bath in the group X methanotrophs than to those from Methylosinus trichosporium OB3b and Methylocystis sp. strain M in the group II methanotrophs. Based on the sequence data of sMMO genes of our strains and other methanotrophs, we designed a new PCR primer to amplify sMMO gene fragments of all the known methanotrophs harboring the mmoX gene. The primer set was successfully used for detecting methanotrophs in the groundwater of trichloroethylene-contaminated sites during in situ-biostimulation treatments. 相似文献
8.
Purification and Characterization of the Soluble Methane Monooxygenase of the Type II Methanotrophic Bacterium Methylocystis sp. Strain WI 14 下载免费PDF全文
Stephan Grosse Louise Laramee Karin-Dagmar Wendlandt Ian R. McDonald Carlos B. Miguez Hans-Peter Kleber 《Applied microbiology》1999,65(9):3929-3935
Methane monooxygenase (MMO) catalyzes the oxidation of methane to methanol as the first step of methane degradation. A soluble NAD(P)H-dependent methane monooxygenase (sMMO) from the type II methanotrophic bacterium WI 14 was purified to homogeneity. Sequencing of the 16S rDNA and comparison with that of other known methanotrophic bacteria confirmed that strain WI 14 is very close to the genus Methylocystis. The sMMO is expressed only during growth under copper limitation (<0.1 μM) and with ammonium or nitrate ions as the nitrogen source. The enzyme exhibits a low substrate specificity and is able to oxidize several alkanes and alkenes, cyclic hydrocarbons, aromatics, and halogenic aromatics. It has three components, hydroxylase, reductase and protein B, which is involved in enzyme regulation and increases sMMO activity about 10-fold. The relative molecular masses of the native components were estimated to be 229, 41, and 18 kDa, respectively. The hydroxylase contains three subunits with relative molecular masses of 57, 43, and 23 kDa, which are present in stoichiometric amounts, suggesting that the native protein has an α2β2γ2 structure. We detected 3.6 mol of iron per mol of hydroxylase by atomic absorption spectrometry. sMMO is strongly inhibited by Hg2+ ions (with a total loss of enzyme activity at 0.01 mM Hg2+) and Cu2+, Zn2+, and Ni2+ ions (95, 80, and 40% loss of activity at 1 mM ions). The complete sMMO gene sequence has been determined. sMMO genes from strain WI 14 are clustered on the chromosome and show a high degree of homology (at both the nucleotide and amino acid levels) to the corresponding genes from Methylosinus trichosporium OB3b, Methylocystis sp. strain M, and Methylococcus capsulatus (Bath). 相似文献
9.
Muhammad Farhan Ul-Haque Bhagyalakshmi Kalidass Alexey Vorobev Bipin S. Baral Alan A. DiSpirito Jeremy D. Semrau 《Applied and environmental microbiology》2015,81(7):2466-2473
Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus trichosporium OB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. When Methylosinus trichosporium OB3b was grown in the presence of 1 μM CuCl2, expression of mmoX, encoding a subunit of the hydroxylase component of sMMO, was very low. mmoX expression increased, however, when methanobactin from Methylocystis sp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated with M. trichosporium OB3b. If M. trichosporium OB3b was grown in the absence of CuCl2, the mmoX expression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure of Methylosinus trichosporium OB3b to SB2-Mb had no effect on expression of mbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2. mbnA expression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin “piracy” may be commonplace. 相似文献
10.
Microbial Oxidation of Hydrocarbons: Properties of a Soluble Methane Monooxygenase from a Facultative Methane-Utilizing Organism, Methylobacterium sp. Strain CRL-26 总被引:3,自引:6,他引:3 下载免费PDF全文
Methylobacterium sp. strain CRL-26 grown in a fermentor contained methane monooxygenase activity in soluble fractions. Soluble methane monooxygenase catalyzed the epoxidation/hydroxylation of a variety of hydrocarbons, including terminal alkenes, internal alkenes, substituted alkenes, branched-chain alkenes, alkanes (C1 to C8), substituted alkanes, branched-chain alkanes, carbon monoxide, ethers, and cyclic and aromatic compounds. The optimum pH and temperature for the epoxidation of propylene by soluble methane monooxygenase were found to be 7.0 and 40°C, respectively. Among various compounds tested, only NADH2 or NADPH2 could act as an electron donor. Formate and NAD+ (in the presence of formate dehydrogenase contained in the soluble fraction) or 2-butanol in the presence of NAD+ and secondary alcohol dehydrogenase generated the NADH2 required for the methane monooxygenase. Epoxidation of propylene catalyzed by methane monooxygenase was not inhibited by a range of potential inhibitors, including metal-chelating compounds and potassium cyanide. Sulfhydryl agents and acriflavin inhibited monooxygenase activity. Soluble methane monooxygenase was resolved into three components by ion-exchange chromatography. All three compounds are required for the epoxidation and hydroxylation reactions. 相似文献
11.
Isolation of Copper Biochelates from Methylosinus trichosporium OB3b and Soluble Methane Monooxygenase Mutants 下载免费PDF全文
Carlos M. Tllez Kristen P. Gaus David W. Graham Robert G. Arnold Roberto Z. Guzman 《Applied microbiology》1998,64(3):1115-1122
Methylosinus trichosporium OB3b produces an extracellular copper-binding ligand (CBL) with high affinity for copper. Wild-type cells and mutants that express soluble methane monooxygenase (sMMO) in the presence and absence of copper (sMMOc) were used to obtain cell exudates that were separated and analyzed by size exclusion high-performance liquid chromatography. A single chromatographic peak, when present, contained most of the aqueous-phase Cu(II) present in the culture medium. In mutant cultures that were unable to acquire copper, extracellular CBL accumulated to high levels both in the presence and in the absence of copper. Conversely, in wild-type cultures containing 5 μM Cu(II), extracellular CBL was maintained at a low, steady level during exponential growth, after which the external ligand was rapidly consumed. When Cu(II) was omitted from the growth medium, the wild-type organism produced the CBL at a rate that was proportional to cell density. After copper was added to this previously Cu-deprived culture, the CBL and copper concentrations in the medium decreased at approximately the same rate. Apparently, the extracellular CBL was produced throughout the period of cell growth, in the presence and absence of Cu(II), by both the mutant and wild-type cultures and was reinternalized or otherwise utilized by the wild-type cultures when it was bound to copper. CBL produced by the mutant strain facilitated copper uptake by wild-type cells, indicating that the extracellular CBLs produced by the mutant and wild-type organisms are functionally indistinguishable. CBL from the wild-type strain did not promote copper uptake by the mutant. The molecular weight of the CBL was estimated to be 500, and its association constant with copper was 1.4 × 1016 M−1. CBL exhibited a preference for copper, even in the presence of 20-fold higher concentrations of nickel. External complexation may play a role in normal copper acquisition by M. trichosporium OB3b. The sMMOc phenotype is probably related to the mutant’s inability to take up CBL-complexed copper, not to a defective CBL structure. 相似文献
12.
Molecular diversity of deep-sea hydrothermal vent aerobic methanotrophs was studied using both 16S ribosomalDNA and pmoA encoding the subunit A of particulate methane monooxygenase (pMOA). Hydrothermal vent plume and chimney samples were collected from back-arc vent at Mid-Okinawa Trough (MOT), Japan, and the Trans-Atlantic Geotraverse (TAG) site along Mid-Atlantic Ridge, respectively. The target genes were amplified by polymerase chain reaction from the bulk DNA using specific primers and cloned. Fifty clones from each clone library were directly sequenced. The 16S rDNA sequences were grouped into 3 operational taxonomic units (OTUs), 2 from MOT and 1 from TAG. Two OTUs (1 MOT and 1 TAG) were located within the branch of type I methanotrophic ?-Proteobacteria. Another MOT OTU formed a unique phylogenetic lineage related to type I methanotrophs. Direct sequencing of 50 clones each from the MOT and TAG samples yielded 17 and 4 operational pmoA units (OPUs), respectively. The phylogenetic tree based on the pMOA amino acid sequences deduced from OPUs formed diverse phylogenetic lineages within the branch of type I methanotrophs, except for the OPU MOT-pmoA-8 related to type X methanotrophs. The deduced pMOA topologies were similar to those of all known pMOA, which may suggest that the pmoA gene is conserved through evolution. Neither the 16S rDNA nor pmoA molecular analysis could detect type II methanotrophs, which suggests the absence of type II methanotrophs in the collected vent samples. 相似文献
13.
Yoshiki Tani Byung Dae Yoon Hideaki Yamada 《Bioscience, biotechnology, and biochemistry》2013,77(10):2545-2552
A KCN-resistant mutant, Methylomonas sp. YK 56, contained three kinds of soluble cytochromes c (cytochromes c-I, c-II, and c-III) though the wild type strain contained two kinds (cytochromes c-I and c-III). The proportion of the three cytochromes c of the mutant were 2.4, 71.5, and 26.1%, and that of the two cytochromes c of the wild type strain were 2.1 and 97.9%, respectively.Cytochromes c-II and c-III of the mutant were purified by a procedure involving ammonium sulfate fractionation and DEAE-, CM-cellulose, and Sephadex G-150 column chromatography. Cytochrome c-II was obtained as crystals with ammonium sulfate. Both absorption peaks of the α-band of the two cytochromes c were at 551.5 nm at room temperature and the β-band of cytochrome c-II had a shoulder at 530 nm. Molecular weights Of the two cytochromes c were 16,000 and 20,000, respectively and their isoelectric points were 4.1 and 3.5, respectively. 相似文献
14.
以中华根瘤菌NP1(Sinorhizobium sp.NP1)为原始菌株,通过同源克隆与Tail-PCR方法,获得1089bp的氨单加氧酶基因(amo)全长序列.该基因编码362个氨基酸,其二级结构与Sinorhizobium meliloti1021AMO的二级结构相似,该蛋白有9个跨膜区段.以自杀穿梭质粒pJQ200SK为原始载体,构建NP1amo基因敲除质粒pJQ200SK-amo-Tc.采用三亲本杂交的方法将该质粒转入原始菌株NP1中,获得amo基因敲除菌株NP1∷amo.通过本贝洛氏(Berthelot)法对氨氮进行测定,发现NP1∷amo的脱氮效率比原始菌株NP1下降约35%.该结果表明,本实验中所克隆的氨单加氧酶基因为脱氮关键酶基因. 相似文献
15.
16.
17.
18.
Aurora Rizzi Alessandra Pontiroli Lorenzo Brusetti Sara Borin Claudia Sorlini Alessandro Abruzzese Gian Attilio Sacchi Timothy M. Vogel Pascal Simonet Marco Bazzicalupo Kaare Magne Nielsen Jean-Michel Monier Daniele Daffonchio 《Applied microbiology》2008,74(4):1250-1254
A strategy is described that enables the in situ detection of natural transformation in Acinetobacter baylyi BD413 by the expression of a green fluorescent protein. Microscale detection of bacterial transformants growing on plant tissues was shown by fluorescence microscopy and indicated that cultivation-based selection of transformants on antibiotic-containing agar plates underestimates transformation frequencies. 相似文献
19.
Resistance of Solid-Phase U(VI) to Microbial Reduction during In Situ Bioremediation of Uranium-Contaminated Groundwater 总被引:3,自引:2,他引:3 下载免费PDF全文
Irene Ortiz-Bernad Robert T. Anderson Helen A. Vrionis Derek R. Lovley 《Applied microbiology》2004,70(12):7558-7560
Speciation of solid-phase uranium in uranium-contaminated subsurface sediments undergoing uranium bioremediation demonstrated that although microbial reduction of soluble U(VI) readily immobilized uranium as U(IV), a substantial portion of the U(VI) in the aquifer was strongly associated with the sediments and was not microbially reducible. These results have important implications for in situ uranium bioremediation strategies. 相似文献
20.
Specific Detection of Arcobacter and Campylobacter Strains in Water and Sewage by PCR and Fluorescent In Situ Hybridization 下载免费PDF全文
Yolanda Moreno Salut Botella Jos Luis Alonso María A. Ferrús Manuel Hernndez Javier Hernndez 《Applied microbiology》2003,69(2):1181-1186
The aim of this study was to evaluate PCR and fluorescent in situ hybridization (FISH) techniques for detecting Arcobacter and Campylobacter strains in river water and wastewater samples. Both 16S and 23S rRNA sequence data were used to design specific primers and oligonucleotide probes for PCR and FISH analyses, respectively. In order to assess the suitability of the methods, the assays were performed on naturally and artificially contaminated samples and compared with the isolation of cells on selective media. The detection range of PCR and FISH assays varied between 1 cell/ml (after enrichment) to 103 cells/ml (without enrichment). According to our results, both rRNA-based techniques have the potential to be used as quick and sensitive methods for detection of campylobacters in environmental samples. 相似文献