首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depletion of CD4+CD25+Foxp3+ regulatory T cells (CD25+ T(reg)) with an anti-CD25 Ab results in immune-mediated rejection of tolerogenic solid tumors. In this study, we have examined the immune response to a mesothelioma tumor in mice after depletion of CD25+ cells to elucidate the cellular mechanisms of CD25+ T(reg), a subject over which there is currently much conjecture. Tumor rejection was found to be primarily due to the action of CD8+ T cells, although CD4+ cells appeared to play some role. Depletion of CD25+ cells resulted in an accumulation in tumor tissue of CD4+ and CD8+ T cells and NK cells that were producing the potent antitumor cytokine IFN-gamma. Invasion of tumors by CD8+ T cells was partially dependent on the presence of CD4+ T cells. Although a significant increase in the proliferation and number of tumor-specific CD8+ T cells was observed in lymph nodes draining the tumor of anti-CD25-treated mice, this effect was relatively modest compared with the large increase in IFN-gamma-producing T cells found in tumor tissue, which suggests that the migration of T cells into tumor tissue may also have been altered. Depletion of CD25+ cells did not appear to modulate antitumor CTL activity on a per cell basis. Our data suggests that CD25+ T(reg) limit the accumulation of activated T cells producing IFN-gamma in the tumor tissue and, to a lesser extent, activation and/or rate of mitosis of tumor-specific T cells in lymph nodes.  相似文献   

2.
Effective resetting of the immune system cannot be achieved by non-specific immunosuppression. Instead, novel strategies aim at harnessing the body's natural tolerance mechanisms to rectify an Ag-specific response without disturbing other immune functions. Fine-tuning of the balance between Ag-specific effector and regulatory T (Tr) cells is a promising strategy that requires detailed understanding of the differentiation and expansion pathways of the relevant Tr cell subsets. Here we review recent developments regarding the control of alloreactivity by induction and expansion of Tr cells. T-cell activation in the presence of tolerogenic APC and cytokines leads to the induction of Tr cells, which can mediate tolerance through cytokine-dependent and/or contact-dependent mechanisms. Better understanding of the mechanisms of immune regulation mediated by Tr cells may enable fine-tuning of specific immune responses and pave the way for novel therapeutic approaches.  相似文献   

3.
CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion   总被引:20,自引:0,他引:20  
Naturally occurring CD4(+) regulatory T cells are generally identified through their expression of CD25. However, in several experimental systems considerable T(reg) activity has been observed in the CD4(+)CD25(-) fraction. Upon adoptive transfer, the expression of CD25 in donor-derived cells is not stable, with CD4(+)CD25(+) cells appearing in CD4(+)CD25(-) T cell-injected animals and vice versa. We show in this study that CD25(+) cells arising from donor CD25(-) cells upon homeostatic proliferation in recipient mice express markers of freshly isolated T(reg) cells, display an anergic state, and suppress the proliferation of other cells in vitro. The maintenance of CD25 expression by CD4(+)CD25(+) cells depends on IL-2 secreted by cotransferred CD4(+)CD25(-) or by Ag-stimulated T cells in peripheral lymphoid organs.  相似文献   

4.
Alloantibody is an important effector mechanism for allograft rejection. In this study, we tested the hypothesis that regulatory T cells with indirect allospecificity can prevent humoral rejection by using a rat transplant model in which acute rejection of MHC class I-disparate PVG.R8 heart grafts by PVG.RT1(u) recipients is mediated by alloantibody and is dependent upon help from CD4 T cells that can recognize the disparate MHC alloantigen only via the indirect pathway. Pretransplant treatment of PVG.RT1(u) recipients with anti-CD4 mAb plus donor-specific transfusion abrogated alloantibody production and prolonged PVG.R8 graft survival indefinitely. Naive syngeneic splenocytes injected into tolerant animals did not effect heart graft rejection, suggesting the presence of regulatory mechanisms. Adoptive transfer experiments into CD4 T cell-reconstituted, congenitally athymic recipients confirmed that regulation was mediated by CD4 T cells and was alloantigen-specific. CD4 T cell regulation could be broken in tolerant animals either by immunizing with an immunodominant linear allopeptide or by depleting tolerant CD4 T cells, but surprisingly this resulted in neither alloantibody generation nor graft rejection. These findings demonstrate that anti-CD4 plus donor-specific transfusion treatment results in the development of CD4 regulatory T cells that recognize alloantigens via the indirect pathway and act in an Ag-specific manner to prevent alloantibody-mediated rejection. Their development is associated with intrinsic tolerance within the alloantigen-specific B cell compartment that persists after T cell help is made available.  相似文献   

5.
Thymus-derived CD4+ CD25+ T regulatory cells (Tregs) are essential for the maintenance of self-tolerance. What critical factors and conditions are required for the extra-thymic development of Tregs remains an important question. In this study, we show that the anti-inflammatory extracellular matrix protein, thrombospondin-1, promoted the generation of human peripheral regulatory T cells through the ligation of one of its receptor, CD47. CD47 stimulation by mAb or a thrombospondin-1 peptide induced naive or memory CD4+ CD25- T cells to become suppressive. The latter expressed increased amounts of CTLA-4, OX40, GITR, and Foxp3 and inhibited autologous Th0, Th1, and Th2 cells. Their regulatory activity was contact dependent, TGF-beta independent, and partially circumvented by IL-2. This previously unknown mechanism to induce human peripheral Tregs in response to inflammation may participate to the limitation of collateral damage induced by exacerbated responses to self or foreign Ags and thus be relevant for therapeutic intervention in autoimmune diseases and transplantation.  相似文献   

6.
7.
Thymus-derived, naturally occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells (nTregs) and Tregs induced in the periphery (iTregs) have both been implicated in regulating immune responses. However, the relationship between these populations in the same host, and their relative contribution to the overall Treg pool, has not been examined. Using a tumor-induced T cell tolerance model, we find that expansion of nTregs and de novo generation of iTregs both contribute to tumor-specific T cell tolerance. In this system in which the number of tumor-specific nTregs can be controlled, the efficiency of nTreg expansion significantly exceeds that of the induction of Tregs from uncommitted progenitors in the tumor-bearing host. However, pre-existing nTregs are neither required for the induction of Tregs nor measurably impact on the extent of their accumulation. Instead, induction of Ag-specific regulatory cells from naive cells is intrinsically influenced by the tumor microenvironment and the presence of tumor Ag.  相似文献   

8.
Regulatory T cells play a crucial role in the homeostasis of the immune response. In addition to CD4+Foxp3+ regulatory T cells, several subsets of Foxp3- regulatory T cells, such as T helper 3 (Th3) cells and type 1 regulatory T (Tr1) cells, have been described in mice and human. Accumulating evidence shows that naïve B cells contribute to tolerance and are able to promote regulatory T cell differentiation. Naïve B cells can convert CD4+CD25- T cells into CD25+Foxp3- regulatory T cells, named Treg-of-B cells by our group. Treg-of-B cells express LAG3, ICOS, GITR, OX40, PD1, and CTLA4 and secrete IL-10. Intriguingly, B-T cell-cell contact but not IL-10 is essential for Treg-of-B cells induction. Moreover, Treg-of-B cells possess both IL-10-dependent and IL-10-independent inhibitory functions. Treg-of-B cells exert suppressive activities in antigen-specific and non-antigen-specific manners in vitro and in vivo. Here, we review the phenotype and function of Foxp3+ regulatory T cells, Th3 cells, Tr1 cells, and Treg-of-B cells.  相似文献   

9.
Dendritic cells (DCs) not only induce but also modulate T cell activation. 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] induces DCs with a tolerogenic phenotype, characterized by decreased expression of CD40, CD80, and CD86 costimulatory molecules, low IL-12 and enhanced IL-10 secretion. We have found that a short treatment with 1,25(OH)(2)D(3) induces tolerance to fully mismatched mouse islet allografts that is stable to challenge with donor-type spleen cells and allows acceptance of donor-type vascularized heart grafts. This effect is enhanced by co-administration of mycophenolate mofetil (MMF), a selective inhibitor of T and B cell proliferation that has also effects similar to 1,25(OH)(2)D(3) on DCs. Graft acceptance is associated with an increased percentage of CD4(+)CD25(+) regulatory cells in the spleen and in the draining lymph node that can protect 100% of syngeneic recipients from islet allograft rejection. CD4(+)CD25(+) cells, able to inhibit the T cell response to a pancreatic autoantigen and to significantly delay disease transfer by pathogenic CD4(+)CD25(-) cells, are also induced by treatment of adult nonobese diabetic (NOD) mice with 1,25-dihydroxy-16,23Z-diene-26,27-hexafluoro-19-nor vitamin D(3) (BXL-698). This treatment arrests progression of insulitis and Th1 cell infiltration, and inhibits diabetes development at non-hypercalcemic doses. The enhancement of CD4(+)CD25(+) regulatory T cells, able to mediate transplantation tolerance and to arrest type 1 diabetes development by a short oral treatment with VDR ligands, suggests possible clinical applications of this approach.  相似文献   

10.

Background

Cellular metabolism plays a critical role in regulating T cell responses and the development of memory T cells with long-term protections. However, the metabolic phenotype of antigen-activated T cells that are responsible for the generation of long-lived memory cells has not been characterized.

Design and Methods

Using lymphocytic choriomeningitis virus (LCMV) peptide gp33-specific CD8+ T cells derived from T cell receptor transgenic mice, we characterized the metabolic phenotype of proliferating T cells that were activated and expanded in vitro in the presence or absence of rapamycin, and determined the capability of these rapamycin-treated T cells to generate long-lived memory cells in vivo.

Results

Antigen-activated CD8+ T cells treated with rapamycin gave rise to 5-fold more long-lived memory T cells in vivo than untreated control T cells. In contrast to that control T cells only increased glycolysis, rapamycin-treated T cells upregulated both glycolysis and oxidative phosphorylation (OXPHOS). These rapamycin-treated T cells had greater ability than control T cells to survive withdrawal of either glucose or growth factors. Inhibition of OXPHOS by oligomycin significantly reduced the ability of rapamycin-treated T cells to survive growth factor withdrawal. This effect of OXPHOS inhibition was accompanied with mitochondrial hyperpolarization and elevation of reactive oxygen species that are known to be toxic to cells.

Conclusions

Our findings indicate that these rapamycin-treated T cells may represent a unique cell model for identifying nutrients and signals critical to regulating metabolism in both effector and memory T cells, and for the development of new methods to improve the efficacy of adoptive T cell cancer therapy.  相似文献   

11.
Mature dendritic cells (DCs) have the capacity to induce efficient primary T cell response and effector cell differentiation. Thus, these cells are a major tool in the design of various immunotherapeutic protocols. We have tested the capacity of different subsets of matured DCs pulsed with a peptide to induce the differentiation of naive CD8 T cells into memory cells in vivo. Flt3 ligand (FL) induces the differentiation of conventional DCs (cDCs) and plasmacytoid DCs (PDCs) from murine bone marrow precursors in vitro. After maturation, both subsets become strong stimulators of Ag-specific T cell responses in vitro. However, the in vivo T cell stimulatory capacity of these DC subsets has not been studied in detail. In the present study, we demonstrate that mature FL-generated DCs induce efficient peptide-specific CD8 T cell response and memory cell differentiation in vivo. This is mainly due to the cDC subset because the PDC subset induced only a negligible primary CD8 response without detectable levels of memory CD8 T cell differentiation. Thus, in vitro FL-generated mature cDCs, but not PDCs, are potent stimulators of peptide-specific CD8 T cell responses and memory generation in vivo.  相似文献   

12.
Leptospira interrogans is responsible for a zoonotic disease known to induce severe kidney dysfunction and inflammation. In this work, we demonstrate that L. interrogans induces NLRP3 inflammasome-dependent secretion of IL-1β through the alteration of potassium transport in bone marrow-derived macrophages. Lysosome destabilization also contributed to the IL-1β production upon stimulation with live, but not dead, bacteria. Using bone marrow-derived macrophages from various TLRs and nucleotide-binding oligomerization domain-deficient mice, we further determined that IL-1β production was dependent on TLR2 and TLR4, suggesting a participation of the leptospiral LPS to this process. Hypokaliemia in leptospirosis has been linked to the presence of glycolipoprotein, a cell wall component of L. interrogans that is known to inhibit the expression and functions of the Na/K-ATPase pump. We show in this study that glycolipoprotein activates the inflammasome and synergizes with leptospiral LPS to produce IL-1β, mimicking the effect of whole bacteria. These results were confirmed in vivo, as wild-type mice expressed more IL-1β in the kidney than TLR2/4-deficient mice 3 d postinfection with L. interrogans. Collectively, these findings provide the first characterization, to our knowledge, of bacteria-induced activation of the NLRP3 inflammasome through the downregulation of a specific host potassium transporter.  相似文献   

13.
Immune responses are suppressed in immunologically privileged sites, which may provide a unique opportunity to prolong allograft survival. However, it is unknown whether testicular immune privilege promotes transplantation tolerance. Mechanisms underlying immune privilege are also not well understood. Here we found that islet transplantation in the testis, an immunologically privileged site, generates much less memory CD8(+) T cells but induces more Ag-specific CD4(+)CD25(+) regulatory T cells than in a conventional site. These CD4(+)CD25(+) cells exhibited the suppression of alloimmune responses in vivo and in vitro. Despite the immune regulation, intratesticular islet allografts all were rejected within 42 days after transplantation although they survived longer than renal subcapsular islet allografts. However, blocking CD40/CD40L costimulation induced the tolerance of intratesticular, but not renal subcapsular, islet allografts. Tolerance to intratesticular islet allografts spread to skin allografts in the non-privileged sites. Either transfer of memory CD8(+) T cells or deletion of CD25(+) T cells in vivo broke islet allograft tolerance. Thus, transplantation tolerance requires both costimulatory blockade, which suppresses acute allograft rejection, and a favorable balance between memory and regulatory T cells that could favorably prevent late allograft failure. These findings reveal novel mechanisms of immune privilege and provide direct evidence that testicular immune privilege fosters the induction of transplantation tolerance to allografts in both immunologically privileged and non-privileged sites.  相似文献   

14.
Natural regulatory T cells control the development of atherosclerosis in mice   总被引:17,自引:0,他引:17  
Atherosclerosis is an immunoinflammatory disease elicited by accumulation of lipids in the artery wall and leads to myocardial infarction and stroke. Here, we show that naturally arising CD4(+)CD25(+) regulatory T cells, which actively maintain immunological tolerance to self and nonself antigens, are powerful inhibitors of atherosclerosis in several mouse models. These results provide new insights into the immunopathogenesis of atherosclerosis and could lead to new therapeutic approaches that involve immune modulation using regulatory T cells.  相似文献   

15.
16.
Lymphopenia has been associated with autoimmune pathology and it has been suggested that lymphopenia-induced proliferation of naive T cells may be responsible for the development of immune pathology. In this study we demonstrate that lymphopenia-induced proliferation is restricted to conditions of extreme lymphopenia, because neither naive nor memory T cells transferred into T cell-depleted hosts proliferate unless the depletion exceeds 90% of the peripheral repertoire. Memory CD4 T cells as well as regulatory CD4 T cells proved to be relatively resistant to depletion regimes, and both subsets restrict the expansion and phenotypic conversion of naive T cells by an IL-7R-dependent mechanism. It therefore seems unlikely that lymphopenia-induced proliferation of peripheral T cells causes deleterious side effects that result in immune pathology in states of partial and transient lymphopenia.  相似文献   

17.
Treatment with ex vivo-generated regulatory T cells (T-reg) has been regarded as a potentially attractive therapeutic approach for autoimmune diseases. However, the dynamics and function of T-reg in autoimmunity are not well understood. Thus, we developed Foxp3gfp knock-in (Foxp3gfp.KI) mice and myelin oligodendrocyte glycoprotein (MOG)(35-55)/IA(b) (MHC class II) tetramers to track autoantigen-specific effector T cells (T-eff) and T-reg in vivo during experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. MOG tetramer-reactive, Foxp3(+) T-reg expanded in the peripheral lymphoid compartment and readily accumulated in the central nervous system (CNS), but did not prevent the onset of disease. Foxp3(+) T cells isolated from the CNS were effective in suppressing naive MOG-specific T cells, but failed to control CNS-derived encephalitogenic T-eff that secreted interleukin (IL)-6 and tumor necrosis factor (TNF). Our data suggest that in order for CD4(+)Foxp3(+) T-reg to effectively control autoimmune reactions in the target organ, it may also be necessary to control tissue inflammation.  相似文献   

18.
Understanding how aging impacts the function of memory CD4 T cells is critical for designing effective vaccines. Our studies show that immunological memory generated during youth functions well into old age, whereas that generated later in life functions poorly. This is the result of declines in the function of naive CD4 T cells from aged individuals and contributes to reduced efficacy of vaccines in the elderly. To begin to identify the cause of this defect, we examined the function of memory T cells generated from bone marrow precursor cells (BMPC) from young or aged mice in young hosts. In two different models, memory cells derived from young and aged BMPC exhibit good ex vivo and in vivo function. Importantly, memory CD4 T cells generated from aged BMPC exhibit potent cognate helper function for humoral responses, which are critical for effective immunization. These results indicate that there are no apparent age-related intrinsic defects in BMPC with regards to generation of functional memory T cells.  相似文献   

19.
The mechanisms behind the increased incidence of marrow graft failure in recipients that receive allogeneic marrow depleted of T cells were studied. Recipient mice were lethally irradiated and challenged with bone marrow cells (BMC) from C.B-17 +/+ (+/+) donors. Radioisotope 125IUdR incorporation was assessed 5 to 7 days after transfer to determine the extent of engraftment. Some groups received BMC in which the T cells were removed by treatment with antibody and C. In addition, some groups received BMC from T cell-deficient C.B-17 scid/scid (SCID) mice to determine the postulated need for donor T cells in hematopoiesis and engraftment. In a model system that distinguishes between possible host NK cell and radioresistant T cell-mediated rejection of marrow allografts, it was determined that the absence of donor T cells in a marrow graft does not affect engraftment in syngeneic recipients. However, both host NK cell and radioresistant T cell rejection was markedly enhanced when SCID BMC or BMC from C.B-17 +/+ donors that had T cells removed by antibody and complement were infused into irradiated allogeneic recipients. Furthermore, the addition of alloreactive thymocytes as a source of T cells could abrogate this increased susceptibility of the BMC to host rejection mechanisms. As determined by histology and 59Fe uptake, the addition of thymocytes resulted in enhanced erythropoiesis. These results suggest that the increased incidence of marrow graft failure when BMC depleted of T cells are used is a result of active rejection by host effector cells and that the adverse effect of marrow T cell depletion can be reversed by the addition of thymocytes.  相似文献   

20.
Whereas memory T cells are required to maintain immunity, regulatory T cells have to keep the immune system in check to prevent excessive inflammation and/or autoimmunity. Both cell types must be present during the lifetime of the organism. However, it is not clear whether both subsets are regulated in tandem or independently of each other, especially because thymic involution severely restricts the production of T-cell populations during ageing. In this Opinion article, we discuss recent evidence in both mice and humans that supports the hypothesis that some CD4(+)CD25(+)FOXP3(+)regulatory T cells can differentiate from rapidly proliferating memory T cells in the periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号