首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mixture of phosphorylated manno-oligosaccharides was isolated from the acid-stable domain of phosphomannan of Candida albicans NIH B-792 strain (serotype B) by acetolysis and was fractionated on a column of Bio-Gel P-2 equilibrated with 50 mM pyridine-CH3COOH buffer, pH 5.0. A monophosphorylated mannotetraose was isolated as the major constituent. Structural analyses of this phosphate-containing tetraose and its reduction product with NaBH4 by 1H, 13C, and two-dimensional homonuclear Hartmann-Hahn NMR spectroscopies, subsequently, gave results consistent with the structure described below (where Manp represents the mannopyranose unit): [formula: see text] It was unexpected that the major phosphorylated branch in the acid-stable domain of the parent phosphomannan of this C. albicans strain is a relatively short mannotetraosyl residue containing solely alpha-1,2-linked mannopyranose units, and a phosphate group as a 6-O-ester on the intermediary unit adjacent to the nonreducing terminal group. These findings indicate that the size of the major phosphorylated branch of this phosphomannan is the same as that of Saccharomyces cerevisiae.  相似文献   

2.
The H-1 and H-2 signals of beta-1,2-linked mannooligosaccharides isolated from the phosphomannan of Candida albicans NIH B-792 strain by mild acid hydrolysis were assigned by a sequential NMR assignment method that combines two-dimensional 1H-1H correlated spectroscopy (COSY) and two-dimensional nuclear Overhauser enhancement and exchange spectroscopy (NOESY). The results indicated that the H-1 and H-2 of each beta-1,2-linked mannopyranose unit show largely different signals compared with those of the alpha-linked ones and that the correlation between linkages and signals could not be explained by a conventional additivity rule. Furthermore, a regular proportional downfield shift of the H-1 signal was observed in the order of the mannose unit from the reducing terminal except those of the reducing and nonreducing terminal positions. Although the 1H NMR spectra of these oligosaccharides were complicated due to the presence of a large portion of the beta-anomer from the reducing terminal mannose unit, reduction of the oligosaccharides with NaBH4 to the corresponding alcohols gave simple and more readily interpretable 1H NMR spectra. Unexpectedly, however, a shift of H-1 signals by this reduction occurred not only on the second mannose unit but also on the third and fourth mannose units from the modified reducing terminal group of each oligosaccharide alcohol. This result indicates that the reducing terminal mannose unit is able to affect up to the fourth mannose unit from the reducing terminal. The presence of a long-distance interresidue NOE also suggests that the beta-1,2-linked mannooligosaccharides have a compactly folded conformation in solution.  相似文献   

3.
The structure of the mannan of Candida albicans NIH A-207 strain (serotype A) was investigated by adopting mild acetolysis followed by enzymolysis with an Arthrobacter GJM-1 exo-alpha-mannosidase. The resultant oligosaccharides, from pentaose to octaose (where manp = D-mannopyranose), were identified as manp beta (1----2)manp alpha (1----2)manp alpha (1----2)manp alpha (1----2)manp, manp beta (1----2)manp beta (1----2)manp alpha (1----2)manp alpha (1----2)- manp alpha (1----2)manp, manp beta (1----2)manp beta (1----2)manp beta (1----2)manp alpha (1----2)manp alpha (1----2)manp alpha (1----2)manp and manp beta (1----2)manp beta (1----2)manp beta (1----2)manp beta (1----2)manp alpha (1----2)manp alpha (1----2)manp alpha (1----2)manp, respectively. Analyses of alpha-linked oligosaccharides obtained by acetolysis under conventional conditions gave the same oligosaccharides, from biose to heptaose, as those obtained from the mannans of C. albicans NIH B-792 (serotype B) and J-1012 (serotype A, formerly serotype C).  相似文献   

4.
The structure of the D-mannan of Candida stellatoidea IFO 1397 strain, which has properties identical to those of the phospho-D-mannan of C. albicans serotype B strain, does not contain phosphate groups, and its 1H- and 13C-n.m.r. spectra are quite similar to those of the phospho-D-mannan of C. albicans NIH B-792 strain. However, the 1H-n.m.r. and 1H-13C-correlation n.m.r. spectra of the products obtained by digestion with alpha-D-mannosidase of C. stellatoidea D-mannan considerably differed from those of the corresponding digestion products of the C. albicans phospho-D-mannan. Additionally, the enzyme-linked immunosorbent assay, by means of a monoclonal antibody corresponding to (1----2)-linked beta-D-oligomannosyl residues, of the phospho-D-mannan of the same C. albicans strain indicated that the C. stellatoidea D-mannan does not contain any (1----2)-linked beta-D-oligomannosyl residues. The absence of these residues may be used as one of the criteria of chemotaxonomical identification of C. stellatoidea spp.  相似文献   

5.
The immunochemical properties between phospho-D-mannan-protein complexes of yeast (Y) and mycelial (M) forms of Candida albicans NIH A-207 (serotype A) strain were compared. Hydrolysis of the Y-form complex gave a mixture of beta-(1----2)-linked D-mannooligosaccharides consisting mainly of tri- and tetra-ose, whereas the M-form complex gave preponderantly D-mannose. The antiserum against Y-form cells exhibited a lower reactivity with the M-form than with the Y-form complex, whereas the antiserum to M-form cells could not distinguish significantly between both complexes. Moreover, these acid-modified complexes showed lower antibody-precipitating effect than each corresponding intact complex against antisera of Y- and M-form cells. Digestion of the acid-modified Y- and M-form complexes with the Arthrobacter GJM-1 strain alpha-D-mannosidase yielded 35- and 40-% degradation products, respectively. Acetolysis of each modified complex under mild conditions gave the same D-mannohexaose, beta-D-Manp-(1----2)-beta-D-Manp-(1----2)-alpha-D-Manp -(1----2)-alpha-D-Manp- (1----2)-alpha-D-Manp-(1----2)-D-Man. Because the complexes of Y- and M-form cells of C. albicans NIH B-792 (serotype B) strain did not give any hexaose fraction containing beta-(1----2) linkages, the presence of this hexaose can be regarded as one of the dominant characteristics of the serotype-A specificity of C. albicans spp.  相似文献   

6.
We conducted a structural analysis of the cell wall mannan-protein complex (mannan) isolated from a pathogenic yeast, Candida glabrata IFO 0622 strain. The chemical structure of mannobiose released from this mannan by treatment with 10 mM HCl at 100 degrees C for 1 h was identified as Manp beta 1-2Man. The treatment of this mannan with 100 mM NaOH at 25 degrees C for 18 h gave a mixture of alpha-1,2- and alpha-1,3-linked oligosaccharides, from tetraose to biose, and mannose. The acid- and alkali-stable mannan moiety was subjected to mild acetolysis with a 100:100:1 (v/v) mixture of (CH3CO)2O, CH3COOH, and H2SO4 at 40 degrees C for 36 h. The resultant three novel oligosaccharides, tetraose, hexaose, and heptaose, were identified as Manp beta 1-2Manp alpha 1-2Manp alpha 1-2Man, Manp alpha 1-2Manp alpha 1-2Manp alpha 1-6Manp alpha 1-2Manp alpha 1-2Man, and Manp alpha 1-3Manp alpha 1-2Manp alpha 1-2Manp alpha 1-6Manp alpha 1- 2Manp alpha 1-2Man, respectively, in addition to the three known oligosaccharides, Manp alpha 1-2Man, Manp alpha 1-2Manp alpha 1-2Man, and Manp alpha 1-3Manp alpha 1-2Manp alpha 1-2Man. A sequential analytical procedure involving partial acid hydrolysis with hot 0.3 M H2SO4, methylation, fast atom bombardment mass, and 1H NMR analyses was quite effective in the structural determination of the novel oligosaccharides. The results indicate that this mannan possesses a structure closely resembling that of Saccharomyces cerevisiae X2180-1A wild type strain, with the presence of small amounts of oligomannosyl residue, Manp beta 1-2Manp alpha 1-X, corresponding to one of the epitopes dominating serotype-A specificity of Candida spp., in addition to branches corresponding to hexaose and heptaose each containing one intermediary alpha-1,6 linkage.  相似文献   

7.
The Protein Kinase C family of enzymes is a group of serine/threonine kinases that play central roles in cell-cycle regulation, development and cancer. A key step in the activation of PKC is translocation to membranes and binding of membrane-associated activators including diacylglycerol (DAG). Interaction of novel and conventional isotypes of PKC with DAG and phorbol esters occurs through the two C1 regulatory domains (C1A and C1B), which exhibit distinct ligand binding selectivity that likely controls enzyme activation by different co-activators. PKC has also been implicated in physiological responses to alcohol consumption and it has been proposed that PKCα (Slater et al. J Biol Chem 272(10):6167–6173, 1997; Slater et al. Biochemistry 43(23):7601–7609, 2004), PKCε (Das et al. Biochem J 421(3):405–413, 2009) and PKCδ (Das et al. J Biol Chem 279(36):37964–37972, 2004; Das et al. Protein Sci 15(9):2107–2119, 2006) contain specific alcohol-binding sites in their C1 domains. We are interested in understanding how ethanol affects signal transduction processes through its affects on the structure and function of the C1 domains of PKC. Here we present the 1H, 15N and 13C NMR chemical shift assignments for the Rattus norvegicus PKCδ C1A and C1B proteins.  相似文献   

8.
The yeast Candida albicans has developed a variety of strategies to resist macrophage killing. In yeasts, accumulation of trehalose is one of the principal defense mechanisms under stress conditions. The gene-encoding trehalose-6-phosphate synthase (TPS1), which is responsible for trehalose synthesis, is induced in response to oxidative stress, as in phagolysosomes. Mutants unable to synthesize trehalose are sensitive to oxidative stress in vitro. In mice, the TPS1-deficient strain, tps1/tps1, displays a lower infection rate than its parental strain (CAI4). We have previously demonstrated the reduced binding capacity of tps1/tps1 and its lower resistance to macrophages. At the same time, its outer cell wall layer was seen to be altered. In this study, we show that depending on the culture conditions, the tps1/tps1 strain regulates the carbohydrate metabolism in a different way to CAI4, as reflected by the enhanced β-mannosylation of cell wall components, especially at the level of the 120 kDa glycoprotein species, accessible at the cell surface of tps1/tps1 when cultured in liquid medium, but not on solid medium. This leads to changes in its surface properties, as revealed by decreased hydrophobicity, and the lower levels of ERK1/2 phosphorylation and tumor necrosis factor-α (TNF-α) production in macrophages, thus increasing the resistance to these cells. In contrast, in solid medium, in which over-glycosylation was less evident, tps1/tps1 showed similar macrophage interaction properties to CAI4, but was less resistant to killing, confirming the protective role of trehalose. Thus, the lack of trehalose is compensated by an over-glycosylation of the cell wall components in the tps1/tps1 mutant, which reduces susceptibility to killing.  相似文献   

9.
Fibrobacter succinogenes S85, a cellulolytic rumen bacterium, is very efficient in degrading lignocellulosic substrates and could be used to develop a biotechnological process for the treatment of wastes. In this work, the metabolism of cellulose by F. succinogenes S85 was investigated using in vivo 13C NMR and 13C-filtered spin-echo difference 1H NMR spectroscopy. The degradation of unlabelled cellulose synthesised by Acetobacter xylinum was studied indirectly, in the presence of [1-13C]glucose, by estimating the isotopic dilution of the final bacterial fermentation products (glycogen, succinate, acetate). During the pre-incubation period of F. succinogenes cells with cellulose fibres, some cells ('non-adherent') did not attach to the solid material. Results for 'adherent' cells showed that about one fourth of the glucose units entering F. succinogenes metabolism originated from cellulose degradation. A huge reversal of succinate metabolism pathway and production of large amounts of unlabelled acetate which was observed during incubation with glucose only, was found to be much decreased in the presence of solid substrate. The synthesis of glucose 6-phophate was slightly increased in the presence of cellulose. Results clearly showed that 'non-adherent' cells were able to metabolise glucose very efficiently; consequently the metabolic state of these cells was not responsible for their 'non-adherence' to cellulose fibre.  相似文献   

10.
A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N, and 13C NMR assignments of the reduced form of this protein. An erratum to this article can be found at  相似文献   

11.
12.
13.
AlgE2, AlgE4, and AlgE6 are members of a family of mannuronan C-5 epimerases encoded by Azotobacter vinelandii, and are active in the biosynthesis of alginate, where they catalyze the post-polymerization conversion of beta-D-mannuronic acid residues into alpha-L-guluronic acid residues. To study the kinetics and mode of action of these enzymes, homopolymeric mannuronan and other alginate samples with various composition were epimerized by letting the enzymatic reaction take place in an NMR tube. Series of 1H NMR spectra were recorded to obtain a time-resolved picture of the epimerization progress and the formation of specific monomer sequences. Starting from mannuronan, guluronic acid contents of up to 82% were introduced by the enzymes, and the product specificity, substrate selectivity, and reaction rates have been investigated. To obtain direct information of the GulA-block formation, similar experiments were performed using a 13C-1-enriched mannuronan as substrate. The NMR results were found to be in good agreement with data obtained by a radioisotope assay based on 3H-5-labeled substrates.  相似文献   

14.
The complete (1)H and (13)C NMR characterization of the tetrasaccharide repeating unit from the K2 polysaccharide of Klebsiella pneumoniae strain 52145 is reported. [chemical structure] In addition a model for its secondary structure was suggested on the basis of dynamic and molecular calculations.  相似文献   

15.
16.
Isotopically labeled, 15N and 15N/13C forms of recombinant methionine-r-sulfoxide reductase 1 (MsrB1, SelR) from Mus musculus were produced, in which catalytic selenocysteine was replaced with cysteine. We report here the 1H, 15N and 13C NMR assignment of the reduced form of this mammalian protein.  相似文献   

17.
Motional changes of the dipalmitoyl lecithin molecule associated with the pretransition in multibilayers are investigated by proton-enhanced 13C-NMR and proton spin-locking experiments. The nitrogen-bound methyl groups of the polar head exhibit faster motion and more disorder in the intermediate phase compared with the gel phase. Although little or no change occurs in the hydrocarbon chain order at the pretransition, the corresponding motional correlation time changes by one order of magnitude. This is consistent with a model involving rotational motion of the hydrocarbon chains about their long axes: in the gel phase the motion is such that neighboring chains make an oscillating disrotatory motion, while in contrast, in the intermediate phase a quasi-free chain rotation takes place. Earlier contradicting results of Davies, J., 1979, Biophys. J., 27:339-358, and ourselves, Trahms, L., and E. Boroske, 1979, Biochim, Biophys. Acta. 552:189-193, are explained by this model.  相似文献   

18.
Sinefungin (SFG) is an antifungal and antiparasitic nucleoside antibiotic composed by ornithine and adenosine moieties both having the potential to bind copper(II). NMR studies performed at physiological pH have shown that the alpha-amino and the carboxylate groups in the ornithine unit are the preferred donor sites for Cu(II) binding. On the contrary, at acidic pH, Cu(II) complexation starts from adenosine nitrogen being the alpha-amino group still protonated and not available for metal binding. The proton paramagnetic relaxation enhancements measured at neutral pH allowed to obtain the 3D structure of the 1:2 Cu(II)-SFG complex. Molecular dynamics calculations were revealing for the existence of secondary Cu(II) interaction with the purine nitrogens of the adenosine moiety.  相似文献   

19.
20.
Carbon fluxes through main pathways of glucose utilization in Escherichia coli cells--glycolysis, pentose phosphate pathway (PPP), and Enther-Doudoroff pathway (EDP)--were studied. Their ratios were analyzed in E. coli strains MG1655, MG1655(edd-eda), MG1655(zwf, edd-eda), and MG1655(pgi, edd-eda). It was shown that the carbon flux through glycolysis was the main route of glucose utilization, averaging ca. 80%. Inactivation of EDP did not affect growth parameters. Nevertheless, it altered carbon fluxes through the tricarboxylic acid cycles and energy metabolism in the cell. Inactivation of PPP decreased growth rate to a lesser degree than glycolysis inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号