首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hypoglycemia frequently occurs during or after exercise in intensively treated patients with type 1 diabetes mellitus (T1DM), but the underlying mechanisms are not clear. In both diabetic and nondiabetic subjects, moderate hypoglycemia blunts counterregulatory responses to subsequent exercise, but it is unknown whether milder levels of hypoglycemia can exert similar effects in a dose-dependent fashion. This study was designed to test the hypothesis that prior hypoglycemia of differing depths induces acute counterregulatory failure of proportionally greater magnitude during subsequent exercise in T1DM. Twenty-two T1DM patients (11 males/11 females, HbA1c 8.0 +/- 0.3%) were studied during 90 min of euglycemic cycling exercise after two 2-h periods of previous day euglycemia or hypoglycemia of 3.9, 3.3, or 2.8 mmol/l (HYPO-3.9, HYPO-3.3, HYPO-2.8, respectively). Patients' counterregulatory responses (circulating levels of neuroendocrine hormones, intermediary metabolites, substrate flux, tracer-determined glucose kinetics, and cardiovascular measurements) were assessed during exercise. Identical euglycemia and basal insulin levels were successfully maintained during all exercise studies, regardless of blood glucose levels during the previous day. After day 1 euglycemia, patients displayed normal counterregulatory responses to exercise. Conversely, when identical exercise was performed after day 1 hypoglycemia of increasing depth, a progressively greater blunting of glucagon, catecholamine, cortisol, endogenous glucose production, and lipolytic responses to exercise was observed. This was paralleled by a graduated increase in the amount of exogenous glucose needed to maintain euglycemia during exercise. Our results demonstrate that acute counterregulatory failure during prolonged, moderate-intensity exercise may be induced in a dose-dependent fashion by differing depths of antecedent hypoglycemia starting at only 3.9 mmol/l in patients with T1DM.  相似文献   

2.
A marked sexual dimorphism exists in healthy individuals in the pattern of blunted neuroendocrine and metabolic responses following antecedent stress. It is unknown whether significant sex-related counterregulatory differences occur during prolonged moderate exercise after antecedent hypoglycemia in type 1 diabetes mellitus (T1DM). Fourteen patients with T1DM (7 women and 7 men) were studied during 90 min of euglycemic exercise at 50% maximal O(2) consumption after two 2-h episodes of previous-day euglycemia (5.0 mmol/l) or hypoglycemia of 2.9 mmol/l. Men and women were matched for age, glycemic control, duration of diabetes, and exercise fitness and had no history or evidence of autonomic neuropathy. Exercise was performed during constant "basal" intravenous infusion of regular insulin (1 U/h) and a 20% dextrose infusion, as needed to maintain euglycemia. Plasma glucose and insulin levels were equivalent in men and women during all exercise and glucose clamp studies. Antecedent hypoglycemia produced a relatively greater (P < 0.05) reduction of glucagon, epinephrine, norepinephrine, growth hormone, and metabolic (glucose kinetics) responses in men compared with women during next-day exercise. After antecedent hypoglycemia, endogenous glucose production (EGP) was significantly reduced in men only, paralleling a reduction in the glucagon-to-insulin ratio and catecholamine responses. In conclusion, a marked sexual dimorphism exists in a wide spectrum of blunted counterregulatory responses to exercise in T1DM after prior hypoglycemia. Key neuroendocrine (glucagon, catecholamines) and metabolic (EGP) homeostatic responses were better preserved during exercise in T1DM women after antecedent hypoglycemia. Preserved counterregulatory responses during exercise in T1DM women may confer greater protection against hypoglycemia than in men with T1DM.  相似文献   

3.
The proinflammatory cytokine interleukin-6 (IL-6) may modulate the onset and progression of complications of diabetes. As this cytokine increases after exercise, and many other exercise responses are altered by prior glycemic fluctuations, we hypothesized that prior hyperglycemia might exacerbate the IL-6 response to exercise. Twenty children with type 1 diabetes (12 boys/8 girls, age 12-15 yr) performed 29 exercise studies (30-min intermittent cycling at approximately 80% peak O2 uptake). Children were divided into four groups based on highest morning glycemic reading [blood glucose (BG) < 150, BG 151-200, BG 201-300, or BG > 300 mg/dl]. All exercise studies were performed in the late morning, after hyperglycemia had been corrected and steady-state conditions (plasma glucose < 120 mg/dl, basal insulin infusion) had been maintained for > or = 90 min. Blood samples for IL-6, growth factors, and counterregulatory hormones were drawn at pre-, end-, and 30 min postexercise time points. At all time points, circulating IL-6 was lowest in BG < 150 and progressively higher in the other three groups. The exercise-induced increment also followed a similar dose-response pattern (BG < 150, 0.6 +/- 0.2 ng/ml; BG 151-200, 1.2 +/- 0.8 ng/ml; BG 201-300, 2.1 +/- 1.1 ng/ml; BG > 300, 3.2 +/- 1.4 ng/ml). Other measured variables (growth hormone, IGF-I, glucagon, epinephrine, cortisol) were not influenced by prior hyperglycemia. Recent prior hyperglycemia markedly influenced baseline and exercise-induced levels of IL-6 in a group of peripubertal children with type 1 diabetes. While exercise is widely encouraged and indeed often considered part of diabetic management, our data underscore the necessity to completely understand all adaptive mechanisms associated with physical activity, particularly in the context of the developing diabetic child.  相似文献   

4.
This study was carried out in order to determine the effect of acute maximal aerobic exercise on the copper and zinc levels in blood. The study was participated by 16 healthy male university students with an average age of 19.44+/-1.63. There were 5 cc blood samples taken from the participants before and after they had been subjected to aerobic loading process (20 m shuttle run). The copper and zinc levels in the blood samples were determined by the use of Anodic Stripping Voltammetry (ASV) technique. The data obtained were evaluated by simple t test and SPSS software. The results revealed the fact that the blood Zn levels of the participants increased and Cu levels decreased with statistical significant extent (p<0.01) after maximal aerobic loading. There found no correlation between the maximal aerobic power levels (Max VO2) of the participants and their resting copper and zinc blood levels. However blood zinc and Max VO2 levels of the participants were positively correlated after maximal aerobic loading. The participants were fed on a zinc and copper free diet six week prior to the program. They were also asked not to use copper and zinc containing vitamins during this period.  相似文献   

5.
Maximal dynamic exercise results in a postexercise hyperglycemia in healthy young subjects. We investigated the influence of maximal exercise on glucoregulation in non-insulin-dependent diabetic subjects (NIDDM). Seven NIDDM and seven healthy control males bicycled 7 min at 60% of their maximal O2 consumption (VO2max), 3 min at 100% VO2max, and 2 min at 110% VO2max. In both groups, glucose production (Ra) increased more with exercise than did glucose uptake (Rd) and, accordingly, plasma glucose increased. However, in NIDDM subjects the increase in Ra was hastened and Rd inhibited compared with controls, so the increase in glucose occurred earlier and was greater [147 +/- 21 to 169 +/- 19 (30 min postexercise) vs. 90 +/- 4 to 100 +/- 5 (SE) mg/dl (10 min postexercise), P less than 0.05]. Glucose levels remained elevated for greater than 60 min postexercise in both groups. Glucose clearance increased during exercise but decreased postexercise to or below (NIDDM, P less than 0.05) basal levels, despite increased insulin levels (P less than 0.05). Plasma epinephrine and glucagon responses to exercise were higher in NIDDM than in control subjects (P less than 0.05). By use of the insulin clamp technique at 40 microU.m-2.min-1 of insulin with plasma glucose maintained at basal levels, glucose disposal in NIDDM subjects, but not in controls, was enhanced 24 h after exercise. It is concluded that, because of exaggerated counter-regulatory hormonal responses, maximal dynamic exercise results in a 60-min period of postexercise hyperglycemia and hyperinsulinemia in NIDDM. However, this event is followed by a period of increased insulin effect on Rd that is present 24 h after exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The present study was undertaken to examine the role of the exercise-induced stress hormone response on the regulation of type 1 and type 2 T lymphocyte intracellular cytokine production. Subjects performed 2.5 h of cycling exercise at 65% maximal O2 uptake while ingesting a 6.4% carbohydrate (CHO) solution, 12.8% CHO solution, or a placebo. Peripheral whole blood samples were stimulated and stained for T lymphocyte surface antigens (CD4 and CD8). Cells were then permeabilized, stained for intracellular cytokines, and analyzed using flow cytometry. Exercise resulted in a decrease (P < 0.05) in the number and percentage of IFN-gamma positive CD4+ and CD8+ T lymphocytes. These stimulated cells produced less IFN-gamma immediately postexercise (P < 0.05) and 2-h postexercise (P < 0.05) compared with preexercise. However, CHO ingestion, which attenuated the exercise-induced stress hormone response compared with placebo (P < 0.05), prevented both the decrease in the number and percentage of IFN-gamma-positive CD4+ and CD8+ T lymphocytes and the suppression of IFN-gamma production from stimulated CD4+ and CD8+ T lymphocytes. There was no effect of exercise on the number of, or cytokine production from, IL-4-positive CD4+ or CD8+ T lymphocytes. These data provide support for the role of exercise-induced elevations in stress hormones in the regulation of type 1 T lymphocyte cytokine production and distribution.  相似文献   

7.
8.
Effect of prior exercise on maximal short-term power output in humans   总被引:1,自引:0,他引:1  
The effect of prior exercise (PE) on subsequent maximal short-term power output (STPO) was examined during cycling exercise on an isokinetic ergometer. In the first series of experiments the duration of PE at a power output equivalent to 98% maximum O2 uptake (VO2max) was varied between 0.5 and 6 min before measurement of maximal STPO. As PE duration increased subsequent STPO fell to approximately 70% of control values after 3-6 min. In series ii the effect of varying the intensity of PE of fixed 6-min duration was studied in five subjects. After PE less than 60% VO2max there was an increase of 12% in STPO, but after greater than 60% VO2max there was a progressive fall in STPO as PE intensity increased, indicating a reduction of approximately 35% at 100% VO2max compared with control values. In series iii we examined the effect on STPO of allowing a recovery period after a fixed intensity (mean = 87% VO2max) of 6 min PE before measurement of STPO. This indicated a rapid recovery of dynamic function with a half time of approximately 32 s, which is similar to the kinetics of PC resynthesis and taken with the other findings suggests the dominant role that PC exerts on the STPO under these conditions.  相似文献   

9.
10.
Seven men were studied during maximal cycle ergometer exercise, to assess the effects of a single or continuous caffeine ingestion on performance and catecholamine secretion. A single blind and randomised procedure was followed with three trials at 100 +/- 5% VO2 max until exhaustion. The first trial was performed after a single administration of 250 mg of caffeine (a). The second and third trials were performed after a treatment of 5 days with 250 mg caffeine per day (continuous = c) and after placebo (p). a and c caffeine administration, 60 min prior to exercise, did not significantly change the time to exhaustion, but increased the plasma levels of both epinephrine (E) and norepinephrine (NE) at exhaustion (p less than 0.05). Single ingestion of caffeine accelerated the elimination of E and NE and increased the maximal blood lactic acid. These data suggest that both single and continuous administration of caffeine do not enhance performance during maximal cycle ergometer exercise, but do increase the exercise response of catecholamine. Only a single administration modifies the blood lactate accumulation.  相似文献   

11.
Previously, the decline in glycemia in individuals with type 1 diabetes has been shown to be less with intermittent high-intensity exercise (IHE) compared with continuous moderate-intensity exercise (MOD) despite the performance of a greater amount of total work. The purpose of the present study was to determine whether this lesser decline in glycemia can be attributed to a greater increment in endogenous glucose production (Ra) or attenuated glucose utilization (Rd). Nine individuals with type 1 diabetes were tested on two separate occasions, during which either a 30-min MOD or IHE protocol was performed under conditions of a euglycemic clamp in combination with the infusion of [6,6-(2)H]glucose. MOD consisted of continuous cycling at 40% VO2 peak, whereas IHE involved a combination of continuous exercise at 40% VO2 peak interspersed with additional 4-s maximal sprint efforts performed every 2 min to simulate the activity patterns of intermittent sports. During IHE, glucose Ra increased earlier and to a greater extent compared with MOD. Similarly, glucose Rd increased sooner during IHE, but the increase by the end of exercise was comparable with that elicited by MOD. During early recovery from IHE, Rd rapidly declined, whereas it remained elevated after MOD, a finding consistent with a lower glucose infusion rate during early recovery from IHE compared with MOD (P<0.05). The results suggest that the lesser decline in glycemia with IHE may be attributed to a greater increment in Ra during exercise and attenuated Rd during exercise and early recovery.  相似文献   

12.

Introduction

Exercise-associated metabolism in type 1 diabetes (T1D) remains under-studied due to the complex interplay between exogenous insulin, counter-regulatory hormones and insulin-sensitivity.

Objective

To identify the metabolic differences induced by two exercise modalities in T1D using ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC–HRMS) based metabolomics.

Methods

Twelve T1D adults performed intermittent high-intensity (IHE) and continuous-moderate-intensity (CONT) exercise. Serum samples were analysed by UHPLC–HRMS.

Results

Metabolic profiling of IHE and CONT highlighted exercise-induced changes in purine and acylcarnitine metabolism.

Conclusion

IHE may increase beta-oxidation through higher ATP-turnover. UHPLC–HRMS based metabolomics as a data-driven approach without an a priori hypothesis may help uncover distinctive metabolic effects during exercise in T1D.Clinical trial registration number is www.clinicaltrials.gov: NCT02068638.
  相似文献   

13.
The beneficial effects of exercise in patients with type 1 diabetes (T1D) are not fully proven, given that it may occasionally induce acute metabolic disturbances. Indeed, the metabolic disturbances associated with sustained exercise may lead to worsening control unless great care is taken to adjust carbohydrate intake and insulin dosage. In this work, pre- and post-exercise metabolites were analyzed using a (1)H-NMR and GC-MS untargeted metabolomics approach assayed in serum. We studied ten men with T1D and eleven controls matched for age, body mass index, body fat composition, and cardiorespiratory capacity, participated in the study. The participants performed 30 minutes of exercise on a cycle-ergometer at 80% VO(2)max. In response to exercise, both groups had increased concentrations of gluconeogenic precursors (alanine and lactate) and tricarboxylic acid cycle intermediates (citrate, malate, fumarate and succinate). The T1D group, however, showed attenuation in the response of these metabolites to exercise. Conversely to T1D, the control group also presented increases in α-ketoglutarate, alpha-ketoisocaproic acid, and lipolysis products (glycerol and oleic and linoleic acids), as well as a reduction in branched chain amino acids (valine and leucine) determinations. The T1D patients presented a blunted metabolic response to acute exercise as compared to controls. This attenuated response may interfere in the healthy performance or fitness of T1D patients, something that further studies should elucidate.  相似文献   

14.
15.
16.
De Crée, Carl, Peter Ball, Bärbel Seidlitz,Gerrit Van Kranenburg, Peter Geurten, and Hans A. Keizer. Plasma2-hydroxycatecholestrogen responses to acute submaximal and maximalexercise in untrained women. J. Appl.Physiol. 82(1): 364-370, 1997.Exercise-induced menstrual problems are accompanied by an increase in catecholestrogen (CE) formation. It has been hypothesized that hypoestrogenemia may besecondary to an increased turnover from estrogens to CE, which then maydisrupt luteinizing hormone release. In addition, the strong affinityof CE for the catecholamine-deactivating enzyme catechol-O-methyltransferase (COMT)has led to speculations about their possible role in safeguardingnorepinephrine from premature decomposition during exercise. Weinvestigated whether acute exercise on a cycle ergometer produces anychanges in CE homeostasis. Nine untrained eumenorrheic women (body fat,24.8 ± 3.1%) volunteered for this study. Baseline plasma CEaverages for total 2-hydroxyestrogens (2-OHE) were 218 ± 29 (SE)pg/ml during the follicular phase (FPh) and 420 ± 58 pg/ml duringthe luteal phase (LPh). 2-Methoxyestrogens (2-MeOE) measured 257 ± 17 pg/ml in the FPh and 339 ± 39 pg/ml in the LPh. Duringincremental exercise, total estrogens (E) increased, but 2-OHE and2-MeOE levels did not significantly change in either phase. The 2-OHE/Eratio (measure of CE turnover) decreased during exercise in bothmenstrual phases, whereas the 2-MeOE/2-OHE ratio (correlates with COMTactivity) did not significantly change. These findings suggest thatthere is insufficient evidence to conclude that brief incrementalexercise in untrained eumenorrheic females acutely produces increasedCE formation.

  相似文献   

17.
Absolute (x 10(3).mm-3) or relative (%) numbers of blood leucocyte types (monocytes, lymphocytes, neutrophils) and lymphocyte subsets (T11+, T4+, T8+, B1+, and NKH1+) reacting with specific monoclonal antibodies were determined at rest, immediately after maximal exercise on a treadmill, in six controls (C), and in six young cyclists before training (BT) and after 5 months of training (AT). Maximal exercise significantly increased the absolute number (mobilization) of virtually all the types of leucocytes and subsets of lymphocytes in C, BT and AT subjects. In these subjects mobilization of natural killer cells (NKH1+) and cytotoxic/suppressor T lymphocytes (T8+) was greater than mobilization of the other leucocyte types and lymphocyte subsets; however, maximal exercise induced no significant changes in the relative numbers of any leucocyte types and lymphocyte subsets, except in the case of T4+ lymphocytes in At cyclists. Chronic submaximal exercise induced increased mobilization of neutrophils and decreased mobilization of lymphocytes during maximal exercise, except in the case of B lymphocytes (B1+) and NKH1+ cells, and decreases in the absolute and relative number of neutrophils at rest. It remains to be seen how these results can explain the modifications of leucocyte activities noted in vitro after isolated or chronic exercise.  相似文献   

18.
To investigate the interactions between the systems that contribute to acid-base homeostasis after severe exercise, we studied the effects of carbonic anhydrase inhibition on exchange of strong ions and CO2 in six subjects after 30 s of maximal isokinetic cycling exercise. Each subject exercised on two randomly assigned occasions, a control (CON) condition and 30 min after intravenous injection of 1,000 mg acetazolamide (ACZ) to inhibit blood carbonic anhydrase activity. Leg muscle power output was similar in the two conditions; peak O2 uptake (VO2) after exercise was lower in ACZ (2,119 +/- 274 ml/min) than in CON (2,687 +/- 113, P less than 0.05); peak CO2 production (VCO2) was also lower (2,197 +/- 241 in ACZ vs. 3,237 +/- 87 in CON, P less than 0.05) and was accompanied by an increase in the recovery half-time from 1.7 min in CON to 2.3 min in ACZ. Whereas end-tidal PCO2 was lower in ACZ than in CON, arterial PCO2 (PaCO2) was higher, and a large negative end-tidal-to-arterial difference (less than or equal to 20 Torr) was present in ACZ on recovery. In ACZ, postexercise increases in arterial plasma [Na+] and [K+] were greater but [La-] was lower. Arteriovenous differences across the forearm showed a greater uptake of La- and Cl- in CON than in ACZ. Carbonic anhydrase inhibition with ACZ, in addition to impairing equilibration of the CO2 system to the acid-base challenge of exercise, was accompanied by changes in equilibration of strong inorganic ions. A lowered plasma [La-] was not accompanied by greater uptake of La- by inactive muscle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号