首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The neural microtubule-associated protein tau binds to and stabilizes microtubules. Because of alternative mRNA splicing, tau is expressed with either 3 or 4 C-terminal repeats. Two observations indicate that differences between these tau isoforms are functionally important. First, the pattern of tau isoform expression is tightly regulated during development. Second, mutation-induced changes in tau RNA splicing cause neuronal cell death and dementia simply by altering the isoform expression ratio. To investigate whether 3- and 4-repeat tau differentially regulate microtubule behavior in cells, we microinjected physiological levels of these two isoforms into EGFP-tubulin-expressing cultured MCF7 cells and measured the effects on the dynamic instability behavior of individual microtubules by time-lapse microscopy. Both isoforms suppressed microtubule dynamics, though to different extents. Specifically, 4-repeat tau reduced the rate and extent of both growing and shortening events. In contrast, 3-repeat tau stabilized most dynamic parameters about threefold less potently than 4-repeat tau and had only a minimal ability to suppress shortening events. These differences provide a mechanistic rationale for the developmental shift in tau isoform expression and are consistent with a loss-of-function model in which abnormal tau isoform expression results in the inability to properly regulate microtubule dynamics, leading to neuronal cell death and dementia.  相似文献   

2.
A computer model of the system of microtubules has been developed to study the mechanisms of action of various factors on this system. The model describes the process of polymerization/depolymerization of microtubules as a set of chemical reactions with certain rate constants using a stochastic approach. Microtubules are visualized in the program field, which makes the model visual. The program imitates the dynamics and structure of the system of cellular microtubules with great, reliability. The parameters generated by the model correlate with the corresponding parameters of microtubules in living cells. We are going to develop this approach to modeling microtubules and similar structures to bring them into a better accord with living systems and to study the influence of various factors on these systems.  相似文献   

3.
TIR (Toll/interleukin-1 receptor) domain-containing proteins play a crucial role in innate immunity in eukaryotes. Brucella is a highly infectious intracellular bacterium that encodes a TIR domain protein (TcpB) to subvert host innate immune responses to establish a beneficial niche for pathogenesis. TcpB inhibits NF-κB (nuclear factor κB) activation and pro-inflammatory cytokine secretions mediated by TLR (Toll-like receptor) 2 and TLR4. In the present study, we have demonstrated that TcpB modulates microtubule dynamics by acting as a stabilization factor. TcpB increased the rate of nucleation as well as the polymerization phases of microtubule formation in a similar manner to paclitaxel. TcpB could efficiently inhibit nocodazole- or cold-induced microtubule disassembly. Microtubule stabilization by TcpB is attributed to the BB-loop region of the TIR domain, and a point mutation affected the microtubule stabilization as well as the TLR-suppression properties of TcpB.  相似文献   

4.
5.
6.
The simple mechanistic and functional division of the kinesin family into either active translocators or non-motile microtubule depolymerases was initially appropriate but is now proving increasingly unhelpful, given evidence that several translocase kinesins can affect microtubule dynamics, whilst non-translocase kinesins can promote microtubule assembly and depolymerisation. Such multi-role kinesins act either directly on microtubule dynamics, by interaction with microtubules and tubulin, or indirectly, through the transport of other factors along the lattice to the microtubule tip. Here I review recent progress on the mechanisms and roles of these translocase kinesins.  相似文献   

7.
Spindle microtubule dynamics: modulation by metabolic inhibitors   总被引:2,自引:0,他引:2  
Recent experiments have shown that spindle microtubules are exceedingly dynamic. Measurements of fluorescence recovery after photobleaching (FRAP), in cells previously microinjected with fluorescent tubulin, provide quantitative information concerning the rate of turnover, or exchange, of tubulin subunits with the population of microtubules in living cells at steady state. In an effort to elucidate the pathways and factors that regulate tubulin exchange with microtubules in living cells, we have investigated the energy requirements for tubulin turnover as measured by FRAP. Spindle morphology was not detectably altered in cells incubated with 5 mM sodium azide and 1 mM 2-deoxyglucose (Az/DOG) for 5 minutes, as assayed by polarized light microscopy and antitubulin immunofluorescence. In FRAP experiments on these ATP-depleted cells, the average rate of recovery and the average percent of bleached fluorescence recovered were reduced to 37% and 30% of controls, respectively. When the inhibitors were removed, cells continued through mitosis, and rapid FRAP was restored. In the presence of azide and glucose, the rate of recovery and percent of fluorescence recovered were only slightly reduced, demonstrating that energy production via glycolysis can support microtubule turnover. Longer incubations with Az/DOG altered the microtubule organization in mitotic cells: astral microtubules lengthened and spindle fibers shortened. Furthermore, both astral and spindle microtubules became resistant to nocodazole-induced disassembly under these conditions. Together these observations indicate that microtubule dynamics require ATP and suggest a relationship between microtubule organization and turnover.  相似文献   

8.
Recent studies have shown that the targeting of substrate adhesions by microtubules promotes adhesion site disassembly (Kaverina, I., O. Krylyshkina, and J.V. Small. 1999. J. Cell Biol. 146:1033-1043). It was accordingly suggested that microtubules serve to convey a signal to adhesion sites to modulate their turnover. Because microtubule motors would be the most likely candidates for effecting signal transmission, we have investigated the consequence of blocking microtubule motor activity on adhesion site dynamics. Using a function-blocking antibody as well as dynamitin overexpression, we found that a block in dynein-cargo interaction induced no change in adhesion site dynamics in Xenopus fibroblasts. In comparison, a block of kinesin-1 activity, either via microinjection of the SUK-4 antibody or of a kinesin-1 heavy chain construct mutated in the motor domain, induced a dramatic increase in the size and reduction in number of substrate adhesions, mimicking the effect observed after microtubule disruption by nocodazole. Blockage of kinesin activity had no influence on either the ability of microtubules to target substrate adhesions or on microtubule polymerisation dynamics. We conclude that conventional kinesin is not required for the guidance of microtubules into substrate adhesions, but is required for the focal delivery of a component(s) that retards their growth or promotes their disassembly.  相似文献   

9.
Modulation of microtubule stability by kinetochores in vitro   总被引:9,自引:6,他引:3       下载免费PDF全文
The interface between kinetochores and microtubules in the mitotic spindle is known to be dynamic. Kinetochore microtubules can both polymerize and depolymerize, and their dynamic behavior is intimately related to chromosome movement. In this paper we investigate the influence of kinetochores on the inherent dynamic behavior of microtubules using an in vitro assay. The dynamics of microtubule plus ends attached to kinetochores are compared to those of free plus ends in the same solution. We show that microtubules attached to kinetochores exhibit the full range of dynamic instability behavior, but at altered transition rates. Surprisingly, we find that kinetochores increase the rate at which microtubule ends transit from growing to shrinking. This result contradicts our previous findings (Mitchison, T. J., and M. W. Kirschner, 1985b) for technical reasons which are discussed. We suggest that catalysis of the growing to shrinking transition by kinetochores may account for selective depolymerization of kinetochore microtubules during anaphase in vivo. We also investigate the effects of a nonhydrolyzable ATP analogue on kinetochore microtubule dynamics. We find that 5' adenylylimido diphosphate induces a rigor state at the kinetochore-microtubule interface, which prevents depolymerization of the microtubule.  相似文献   

10.
Microtubules assembled with paclitaxel and docetaxel differ in their numbers of protofilaments, reflecting modification of the lateral association between αβ-tubulin molecules in the microtubule wall. These modifications of microtubule structure, through a not-yet-characterized mechanism, are most likely related to the changes in tubulin-tubulin interactions responsible for microtubule stabilization by these antitumor compounds. We have used a set of modified taxanes to study the structural mechanism of microtubule stabilization by these ligands. Using small-angle x-ray scattering, we have determined how modifications in the shape and size of the taxane substituents result in changes in the interprotofilament angles and in their number. The observed effects have been explained using NMR-aided docking and molecular dynamic simulations of taxane binding at the microtubule pore and luminal sites. Modeling results indicate that modification of the size of substituents at positions C7 and C10 of the taxane core influence the conformation of three key elements in microtubule lateral interactions (the M-loop, the S3 β-strand, and the H3 helix) that modulate the contacts between adjacent protofilaments. In addition, modifications of the substituents at position C2 slightly rearrange the ligand in the binding site, modifying the interaction of the C7 substituent with the M-loop.  相似文献   

11.
The response of granulocyte progenitors (CFU-D) from patients with chronic myeloid leukaemia (CML), neutrophilic reaction (NR) and healthy subjects to macrophage-derived stimulatory and inhibitory factors was investigated in diffusion chamber culture. CFU-D from CML and NR demonstrated a normal reactivity to macrophage stimulation but were hyporesponsive to indomethacin-sensitive inhibition. It is also shown that the spleens of patients with Hodgkin's disease contain locally activated macrophages with higher production of indomethacin-sensitive growth inhibiting factor for autologous CFU-D clonal proliferation.  相似文献   

12.
Many actions of cyclooxygenase-2 in cellular dynamics and in cancer   总被引:84,自引:0,他引:84  
Cyclooxygenase-2 (COX-2) is the inducible isoform of cyclooxygenase, the enzyme that catalyzes the rate-limiting step in prostaglandin synthesis from arachidonic acid. Various prostaglandins are produced in a cell type-specific manner, and they elicit cellular functions via signaling through G-protein coupled membrane receptors, and in some cases, through the nuclear receptor PPAR. COX-2 utilization of arachidonic acid also perturbs the level of intracellular free arachidonic acid and subsequently affects cellular functions. In a number of cell and animal models, induction of COX-2 has been shown to promote cell growth, inhibit apoptosis and enhance cell motility and adhesion. The mechanisms behind these multiple actions of COX-2 are largely unknown. Compelling evidence from genetic and clinical studies indicates that COX-2 upregulation is a key step in carcinogenesis. Overexpression of COX-2 is sufficient to cause tumorigenesis in animal models and inhibition of the COX-2 pathway results in reduction in tumor incidence and progression. Therefore, the potential for application of non-steroidal anti-inflammatory drugs as well as the recently developed COX-2 specific inhibitors in cancer clinical practice has drawn tremendous attention in the past few years. Inhibition of COX-2 promises to be an effective approach in the prevention and treatment of cancer, especially colorectal cancer.  相似文献   

13.
Since their initial discovery, the intriguing proteins of the +TIP network have been the focus of intense investigation. Although many of the individual +TIP functions have been revealed, the capacity for +TIP proteins to regulate each other has not been widely addressed. Importantly, recent studies involving EBs, the master regulators of the +TIP complex, and several TOG-domain proteins have uncovered a novel mechanism of mutual +TIP regulation: allosteric interactions through changes in microtubule structure. These findings have added another level of complexity to the existing evidence on +TIP regulation and highlight the cooperative nature of the +TIP protein network.  相似文献   

14.
Microtubules are subcellular nanotubes composed of α- and β-tubulin that arise from microtubule nucleation sites and are mainly composed of γ-tubulin complexes. Cell wall encased plant cells have evolved four distinct microtubule arrays that regulate cell division and expansion. Microtubule-associated proteins, the so called MAPs, construct, destruct and reorganize microtubule arrays thus regulating their spatiotemporal transitions during the cell cycle. By physically binding to microtubules and/or modulating their functions, MAPs control microtubule dynamic instability and/or interfilament cross talk. We survey the recent analyses of Arabidopsis MAPs such as MAP65, MOR1, CLASP, katanin, TON1, FASS, TRM, TAN1 and kinesins in terms of their effects on microtubule array organizations and plant development.  相似文献   

15.
16.
17.
The length dynamics both of microtubule-associated protein (MAP)-rich and MAP-depleted bovine brain microtubules were examined at polymer mass steady state. In both preparations, the microtubules exhibited length redistributions shortly after polymer mass steady state was attained. With time, however, both populations relaxed to a state in which no further changes in length distributions could be detected. Shearing the microtubules or diluting the microtubule suspensions transiently increased the extent to which microtubule length redistributions occurred, but again the microtubules relaxed to a state in which changes in the polymer length distributions were not detected. Under steady-state conditions of constant polymer mass and stable microtubule length distribution, both MAP-rich and MAP-depleted microtubules exhibited behavior consistent with treadmilling. MAPs strongly suppressed the magnitude of length redistributions and the steady-state treadmilling rates. These data indicate that the inherent tendency of microtubules in vitro is to relax to a steady state in which net changes in the microtubule length distributions are zero. If the basis of the observed length redistributions is the spontaneous loss and regain of GTP-tubulin ("GTP caps") at microtubule ends, then in order to account for stable length distributions the microtubule ends must reside in the capped state far longer than in the uncapped state, and uncapped microtubule ends must be rapidly recapped. The data suggest that microtubules in cells may have an inherent tendency to remain in the polymerized state, and that microtubule disassembly must be induced actively.  相似文献   

18.
Here we introduce plusTipTracker, a Matlab-based open source software package that combines automated tracking, data analysis, and visualization tools for movies of fluorescently-labeled microtubule (MT) plus end binding proteins (+TIPs). Although +TIPs mark only phases of MT growth, the plusTipTracker software allows inference of additional MT dynamics, including phases of pause and shrinkage, by linking collinear, sequential growth tracks. The algorithm underlying the reconstruction of full MT trajectories relies on the spatially and temporally global tracking framework described in Jaqaman et al. (2008). Post-processing of track populations yields a wealth of quantitative phenotypic information about MT network architecture that can be explored using several visualization modalities and bioinformatics tools included in plusTipTracker. Graphical user interfaces enable novice Matlab users to track thousands of MTs in minutes. In this paper, we describe the algorithms used by plusTipTracker and show how the package can be used to study regional differences in the relative proportion of MT subpopulations within a single cell. The strategy of grouping +TIP growth tracks for the analysis of MT dynamics has been introduced before (Matov et al., 2010). The numerical methods and analytical functionality incorporated in plusTipTracker substantially advance this previous work in terms of flexibility and robustness. To illustrate the enhanced performance of the new software we thus compare computer-assembled +TIP-marked trajectories to manually-traced MT trajectories from the same movie used in Matov et al. (2010).  相似文献   

19.
In vertebrates, the arrestins are a family of four proteins that regulate the signaling and trafficking of hundreds of different G-protein-coupled receptors (GPCRs). Arrestin homologs are also found in insects, protochordates and nematodes. Fungi and protists have related proteins but do not have true arrestins. Structural information is available only for free (unbound) vertebrate arrestins, and shows that the conserved overall fold is elongated and composed of two domains, with the core of each domain consisting of a seven-stranded β-sandwich. Two main intramolecular interactions keep the two domains in the correct relative orientation, but both of these interactions are destabilized in the process of receptor binding, suggesting that the conformation of bound arrestin is quite different. As well as binding to hundreds of GPCR subtypes, arrestins interact with other classes of membrane receptors and more than 20 surprisingly diverse types of soluble signaling protein. Arrestins thus serve as ubiquitous signaling regulators in the cytoplasm and nucleus.  相似文献   

20.
During infection, many pathogenic bacteria modulate the actin cytoskeleton of eukaryotic host cells to facilitate various infectious processes such as the attachment to or invasion of epithelial cells. Additionally, some pathogenic bacteria are capable of modulating the dynamics of host microtubule (MTs). Although the molecular basis for this is still poorly understood, a recent study of the Shigella VirA effector protein, which is delivered via a type III secretion system, suggests that MT destabilization plays an important role in Shigella infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号