共查询到10条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
William Stillwell 《Journal of theoretical biology》1977,65(3):479-497
A model based on quinol phosphates is proposed for the origin of photophosphorylation. This model is divided into three time periods. In the early period, when the primitive earth was under reducing conditions, quinol phosphates were produced through quinol radical intermediates formed by the activation of hydroquinones with ultraviolet light. Phosphorylation of a number of acceptor molecules including inorganic orthophosphate and adenosine diphosphate occurred when quinol phosphate was oxidized by Fe+3 or a water soluble iron-sulfur complex. After the appearance of a rudimentary ozone layer (middle period), ultraviolet light was no longer an important factor in primordial chemistry. Quinol phosphates were then produced by visible light activation of porphyrin-quinone charge transfer complexes. In the presence of light, electrons from H2S, H2 and several reduced organic compounds were transfered through the porphyrin to quinone yielding the quinol radical. Again, quinol phosphate was produced from breakdown of the free radical. Phosphorylation of a number of acceptor molecules was achieved when quinol phosphates were oxidized by the iron-sulfur complexes. Evolutionary pressure to increase the efficiency of these reactions resulted in the electron donor-porphyrin-quinone-iron-sulfur complex becoming more lipophilic and thus associated with the protomembrane of the evolving protocell. In the late period the protomembrane became more sophisticated and quinone was replaced as the primary electron acceptor in the photoprocess by one of the iron-sulfur complexes originally present as oxidizing agents for the quinol phosphates. Quinones eventually lost their role as phosphorylating agents and became only electron and proton shuttles in the evolving electron transport chain. The protocell evolved the ability to use water as the electron donor as the relative roles of iron and quinone in the photoprocess switched. 相似文献
5.
N. Rashevsky 《Bulletin of mathematical biology》1943,5(4):165-169
On the basis of the recently proposed new fundamental equation of mathematical biophysics, a suggestion is made for a theory
of the formation of a primitive cell from nonliving material. The discussion includes a suggestion for a quantitative formulation
of the degree of biological organization. It is shown that according to the fundamental equation of mathematical biophysics,
organization of the nonliving material may spontaneously increase under certain conditions, leading to a formation of a primitive
organism. This process however, is a very slow one, requiring time intervals of several years or even decades. This may account
for the failure in observing or artificially producing spontaneous generation. 相似文献
6.
7.
8.
L. M. Chailakhyan 《Doklady biological sciences》2007,416(1):338-340
9.
On the origin of plastids 总被引:1,自引:0,他引:1
The buoyant density in CsCl of ribosomes from chloroplasts of the green algaChlorella pyrenoidosa and two species of higher plants,Pisum sativum andChenopodium album, has been studied. From the relative protein content it was calculated that 70S ribosomes from chloroplasts are much smaller than 80S cytoplasmic ribosomes (3.0–3.1×106 and 4.0×106 daltons) and slightly larger than 70S ribosomes from abcteriaE. coli 2.5×106 daltons). Chloroplast ribosomes from pea seedlings were analyzed by two-dimensional polyacrylamide gel electrophoresis. They appear to contain 71 proteins. This indicates that chloroplast ribosomes contain a larger number of proteins than do the ribosomes fromE. coli and other species of Enterobacteriaceae. Further study will permit a probable evaluation of the validity of Mereschkowsky's hypothesis that the photosynthetic plastids of eukaryotic plant cells are the evolutionary descendants of endosymbiotic blue-green algae. 相似文献
10.
A. H. Brush 《Journal of evolutionary biology》1996,9(2):131-142
The appearance of feathers defines the appearance of birds. A number of changes defined, preceded or accompanied the event. The changes were hierarchical in nature and included revolutions in genomic organization (i.e., HOX and the feather keratin genes), protein sequence and shape, the large scale organization of proteins into filaments, and in the geometry of the cells and their roles in the follicle. Changes at each of these levels differ or produced different products than found in its analog in reptiles. They are essentially unique to birds and produced an evolutionary novelty. I used analysis of extant structure and information on development to reconstruct key events in the evolution of feathers. The ancestral reptilian epidermal structure, while probably a scale or tubercles, is still unidentified. The structural genes of feather proteins (φ-keratin) are tandem repeats probably assembled from pre-existing exons. They are unlike the alpha-keratin of vertebrate soft epidermis. Amino-acid composition, shape, and behavior of feather keratins are unique among vertebrates. The 3-dimensional organization of the follicle and the developmental processes are also unique. Although we lack a complete understanding of the appearance and early role of feathers, they are clearly the results of novel events. 相似文献