首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kwak SS  Jeung SH  Biswas D  Jeon YB  Hyun SH 《Theriogenology》2012,77(6):1186-1197
This study investigated the effects of porcine granulocyte-macrophage colony-stimulating factor (pGM-CSF) on the developmental potential of porcine in vitro-fertilized (IVF) embryos in chemically and semidefined (with BSA) medium. In experiment 1, zygotes were treated with different concentrations of pGM-CSF (0, 2, 10, 100 ng/mL). The results indicated that 10 ng/mL pGM-CSF significantly (P < 0.05) increased blastocyst development and total cell number (15.1% and 53.5, respectively) compared with the control (6.1%, and 38.8, respectively). Comparing blastocyst formation, early and expanded blastocyst formation was significantly higher in the 10 ng/mL-pGM-CSF group than in the control on Days 6 and 7 of the culture period. However, there was no significant difference in cleavage rate. Experiment 2 demonstrated that pGM-CSF influenced the percentage of blastocyst formation and total cell number when pGM-CSF was added during Days 4 to 7 (14.6% and 53.9, respectively) or Days 0 to 7 (15.2% and 54.0, respectively) compared with the control (7.8% and 43.1, respectively) and compared with Days 0 to 3 (8.7% and 42.5, respectively). Similarly, early blastocyst formation rates were significantly higher at Days 4 to 7 than in the control, and expanded blastocyst formation was significantly higher at Days 4 to 7 or Days 0 to 7. No significant difference in cleavage rates appeared among the groups. In experiment 3, in the presence of BSA, pGM-CSF also increased the percentage of embryos that developed to the blastocyst stage and the total cell number (20.3% and 59.8, respectively) compared with the control (14.9% and 51.4, respectively), whereas there was no significant difference in cleavage rate. Experiment 4 found that the total cell number and the number of cells in the inner cell mass (ICM) were significantly increased compared with the control when zygotes were cultured in either porcine zygotic medium (PZM)-3 or PZM-4 supplemented with 10 ng/mL pGM-CSF. The number of trophectoderm (TE) cells was significantly higher in PZM-3 medium supplemented with pGM-CSF than in the control, and the number tended to increase (P = 0.058) in PZM-4 medium supplemented with pGM-CSF. The ratio of inner cell mass to trophectoderm cells was significantly higher in PZM-4 supplemented with 10 ng/mL pGM-CSF, but not in PZM-3. In experiment 5, it was found that the male pronuclear formation rate, monospermic penetration and sperm/oocyte were 95.4%, 37.2%, and 2.4, respectively. Together, these results suggest that pGM-CSF may have a physiological role in promoting the development of porcine preimplantation embryos and regulating cell viability and that addition of pGM-CSF to IVC medium at Days 4 to 7 or 0 to 7 improves the developmental potential of porcine IVF embryos.  相似文献   

2.
Previous studies showed that the addition of a growth factor to the culture medium could modulate embryo development. The possible secretion of different factors to the culture medium by the embryo itself, however, has been poorly evaluated. The present study was designed to investigate: (1) the influence of single or group culture on the development of 2-cell mouse embryos (strain CD-1) to the blastocyst stage; (2) the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) and stem cell factor (SCF) into the culture medium by the embryo; and (3) the levels of GM-CSF and SCF in the culture medium from both single and group embryos. Two-cell CD-1 mouse embryos were cultured for 96 h singly or in groups of five embryos per drop. GM-CSF and SCF were assayed by ELISA in the complete culture medium. It was found that embryos cultured in groups gave a higher percentage of total blastocyst formation and hatched blastocyst when compared with single embryo culture. The mouse embryos secreted GM-CSF and SCF to the culture medium. The concentration of these cytokines is significantly higher in the group cultures than the level found in single cultures. In conclusion, mouse embryos in culture secrete GM-CSF and SCF to the culture medium and the concentration of these cytokines increases during communal culture. These factors may be operating in both autocrine and paracrine pathways to modulate embryo development during in vitro culture.  相似文献   

3.
Levels of serum granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) in patients with various leukocyte disorders were estimated by enzyme linked immunosorbent assay (ELISA). Some cases of acute myelogenous leukemia and aplastic anemia showed elevated serum levels of G-CSF and/or GM-CSF, whereas almost all of 23 healthy controls showed G-CSF and GM-CSF levels lower than 100 pg/ml. High levels of both types of CSF were noted in patients with granulocytosis due to infection. These levels became lower after resolution of the infection. Daily changes in serum CSF levels were also examined in a patient with autoimmune neutropenia, and it was found that the peripheral neutrophilic granulocyte count changed almost in parallel with the serum G-CSF level but not with GM-CSF, following the pattern with a delay of about 4–5 h, suggesting the possibility that G-CSF mainly regulates peripheral neutrophil circulation.  相似文献   

4.
5.
6.
Human granulocyte-macrophage colony-stimulating factor (hGM-CSF), also known as sargramostim or molgramostin, is a cytokine that functions as a hematopoietic cell growth factor. Here we report a near complete assignment for the backbone and side chain resonances for the mature polypeptide.  相似文献   

7.
To study the structure-function relationship of the human granulocyte-macrophage colony-stimulating factor (GM-CSF), genes were constructed that encode its three deletion mutants: D1, a mutant with the deletion of six amino acid residues (37-42) some of which are a part of a beta-structural region; D2, a mutant with the deletion of the unstructured six-aa sequence of a loop (45-50); and D3, a mutant with the deletion of 14 aa residues (37-50) corresponding to the A-B loop and encoded by the second exon of the gmcsf gene. The expression products of these genes in E. coli were accumulated in a fraction of insoluble proteins. The secondary structures of the mutant proteins were similar to that of the full-size GM-CSF, but the biological activity of the deletion mutants was 130 times lower than that of the GM-CSF: they stimulated the proliferation of the TF-1 cell line at 3 ng/ml concentration. The resulting proteins displayed antagonistic properties toward the full-size GM-CSF, with the inhibition degree of its colony-stimulating activity being 27%. A decrease in the mutant activity in the row D2 > D1 > D3 implies the importance of the conserved hydrophobic residues involved in the formation of the beta-structure for the formation of the GM-CSF functional conformation.  相似文献   

8.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has emerged as an important regulation for hematopoietic cell development and function. Within the myeloid lineages, GM-CSF serves as a growth and developmental factor for intermediate-stage progenitors between early, interleukin 3-responsive and late granulocyte colony-stimulating factor-responsive precursors. GM-CSF also serves as an activator of circulating effector cells. The ability of GM-CSF to induce monocyte expression of tumor necrosis factor, interleukin 1 and other factors, further ties this hormone into a network of cytokines that interact to regulate many hematologic and immunologic responses. The availability of large quantities of recombinant GM-CSF now provides the opportunity and challenge not only for unraveling the mechanisms regulating hematopoiesis, but also for developing new therapies for enhancement of host defense against infection that were not previously possible.  相似文献   

9.
10.
Data from several inflammation/autoimmunity models indicate that GM-CSF can be a key inflammatory mediator. Convenient models in readily accessible tissues are needed to enable the GM-CSF-dependent cellular responses to be elaborated. In this study, we show that, in contrast to the response to the commonly used i.p. irritant, thioglycolate medium, an Ag-specific methylated BSA-induced peritonitis in GM-CSF(-/-) mice was severely compromised. The reduced response in the latter peritonitis model was characterized by fewer neutrophils and macrophages, as well as by deficiencies in the properties of the remaining macrophages, namely size and granularity, phagocytosis, allogeneic T cell triggering, and proinflammatory cytokine production. B1 lymphocytes were more evident in the GM-CSF(-/-) Ag-specific exudates, indicating perhaps that GM-CSF can act on a common macrophage-B1 lymphocyte precursor in the inflamed peritoneum. We propose that these findings contribute to our understanding of how GM-CSF acts as a proinflammatory cytokine in many chronic inflammatory/autoimmune diseases. Of general significance, the findings also indicate that the nature of the stimulus is quite critical in determining whether a particular inflammatory mediator, such as GM-CSF, plays a role in an ensuing inflammatory reaction.  相似文献   

11.
Mouse plasmacytoma FLOPC21 was adapted to culture in the presence of a mouse Th cell supernatant. A stable factor-dependent cell line was derived from this culture and the factor responsible for its growth was identified as granulocyte-macrophage colony-stimulating factor.  相似文献   

12.
To establish a production platform for recombinant proteins in rice suspension cells, we first constructed a Gateway-compatible binary T-DNA destination vector. It provided a reliable and effective method for the rapid directional cloning of target genes into plant cells through Agrobacterium-mediated transformation. We used the approach to produce mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) in a rice suspension cell system. The promoter for the αAmy3 amylase gene, which is induced strongly by sugar depletion, drove the expression of mGM-CSF. The resulting recombinant protein was fused with the αAmy3 signal peptide and was secreted into the culture medium. The production of rice-derived mGM-CSF (rmGM-CSF) was scaled up successfully in a 2-L bioreactor, in which the highest yield of rmGM-CSF was 24.6 mg/L. Due to post-translational glycosylation, the molecular weight of rmGM-CSF was larger than that of recombinant mGM-CSF produced in Escherichia coli. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60.  相似文献   

13.
When murine T lymphocyte clones were cultured with purified recombinant IL 2, a dose-dependent increase in the production of granulocyte-macrophage colony-stimulating factor (GM-CSF) was observed. Whereas these clones produced both GM-CSF and multi-lineage CSF (multi-CSF) when cultured with concanavalin A, IL 2 induced the production of GM-CSF in the virtual absence of detectable multi-CSF. In addition, IL 2 synergistically enhanced the production of both GM-CSF and multi-CSF by some antigen- or Con-A-stimulated clones. Like Con-A-induced CSF production, GM-CSF production in the presence of IL 2 required protein synthesis but could occur in the absence of proliferation by the clone. Analysis of dose-response curves for stimulation of CSF production by Con A in the presence and absence of IL 2 suggested that Con A and IL 2 activated GM-CSF synthesis by different mechanisms. These results indicate that the coordinate production of two factors by a single T cell clone stimulated with Con A can be dissociated when the clone is stimulated with IL 2.  相似文献   

14.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine derived from activated T cells, endothelial cells, fibroblasts, and macrophages. It stimulates myeloid and erythroid progenitors to form colonies in semisolid medium in vitro, as well as enhancing multiple differentiated functions of mature neutrophils, macrophages, and eosinophils. We have examined the binding of human GM-CSF to a variety of responsive human cells and cell lines. The most mature myelomonocytic cells, specifically human neutrophils, macrophages, and eosinophils, express the highest numbers of a single class of high affinity receptors (Kd approximately 37 pM, 293-1000 sites/cell). HL-60 and KG-1 cells exhibit an increase in specific binding at high concentrations of GM-CSF; computer analysis of the data is nonetheless consistent with a single class of high affinity binding sites with a Kd approximately 43 pM and 20-450 sites/cell. Dimethyl sulfoxide induces a 3-10-fold increase in high affinity receptors expressed in HL-60 cells, coincident with terminal neutrophilic differentiation. Finally, binding of 125I-GM-CSF to fresh peripheral blood cells from six patients with chronic myelogenous leukemia was analyzed. In three of six cases, binding was similar to the nonsaturable binding observed with HL-60 and KG-1 cells. GM-CSF binding was low, or in some cases, undetectable on myeloblasts obtained from eight patients with acute myelogenous leukemia. The observed affinities of the receptor for GM-CSF are consistent with all known biological activities. Affinity labeling of both normal neutrophils and dimethyl sulfoxide-induced HL-60 cells with unglycosylated 125I-GM-CSF yielded a band of 98 kDa, implying a molecular weight of approximately 84,000 for the human GM-CSF receptor.  相似文献   

15.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that stimulates myeloid cell proliferation and maturation and enhances the function of terminally differentiated effector cells. Phase I and II clinical trials have demonstrated mild to moderate toxicities at doses of less than 30 micrograms/kg/day. These studies suggest a potential role for this growth factor to stimulate myelopoiesis in patients with aplastic anemia, myelodysplastic syndromes, AIDS, chemotherapy-induced myelosuppression, chronic neutropenia, and following bone marrow transplantation. The potential clinical uses of GM-CSF will depend on results of studies designed to optimize its therapeutic efficacy.  相似文献   

16.
The role of the eosinophil as an active proinflammatory cell in asthma and other allergic disorders has been well established. Glucocorticosteroids have long been used therapeutically as antiinflammatory agents in a variety of disease states where eosinophilia is a prominent feature. Although glucocorticoids are known to reduce tissue and circulating eosinophil numbers, the mechanisms by which they do so have not been clearly elucidated. Culture of eosinophils in vascular endothelial cell supernatants (VEC SUP) induces phenotypic and functional changes and prolongs the survival of the eosinophils. The survival-promoting activity in VEC SUP was shown to be granulocyte-macrophage CSF (GM-CSF) by neutralization with specific antibody. The potent glucocorticosteroid, dexamethasone (DEX), inhibited the prolongation of eosinophil survival caused by culture in either VEC SUP or human rGM-CSF. DEX (10(-6) M) exerted a direct survival-inhibitory effect on the eosinophil by the 4th day in culture in VEC SUP. This survival-inhibitory effect was dependent on the concentration of DEX (10(-10)-10(-6) M). Other glucocorticoids, including prednisolone (10(-7), 10(-6) M) and hydrocortisone (10(-7), 10(-6) M) also inhibited survival. The rank order of potency of the steroids indicates that this effect is mediated by a glucocorticoid receptor. This conclusion is supported by the failure of the sex steroids testosterone (10(-8)-10(-6) M) or beta-estradiol (10(-6) M) to inhibit eosinophil survival in the presence of VEC SUP. The effect of glucocorticoids on eosinophils is not a simple direct toxic effect because it was reversed by higher concentrations of GM-CSF. DEX shifted the GM-CSF dose-response curve for survival approximately fivefold to the right. GM-CSF induced a shift in eosinophil buoyant density which was partially blocked by DEX. These results suggest that glucocorticoids may inhibit elements of cytokine "priming" of eosinophils and that the eosinophilopenic effects of glucocorticoids may result in part from a direct effect on the eosinophil within a regulatory system involving cytokines.  相似文献   

17.
C Gamba-Vitalo  M P DiGiovanna  A C Sartorelli 《Blood cells》1991,17(1):193-205; discussion 206-8
To evaluate the efficacy of recombinant murine granulocyte-macrophage colony-stimulating factor (rGM-CSF) in attenuating the myelosuppression associated with chemotherapy, the effects of 100 and 300 ng rGM-CSF, administered twice daily by intraperitoneal injection for 6 consecutive days to mice 24 hours after a dose of 200 mg/kg cyclophosphamide, were measured. Six days after the initial injection of rGM-CSF, a significant increase occurred in the absolute myeloid count compared to that of vehicle-treated animals. The difference was most pronounced on day 7, attaining levels of 327% and 428% of the control; these increases slowly declined to that of the control level by day 19. No significant effect was produced by rGM-CSF on the packed red cell volume or on the platelet count. Furthermore, the administration of rGM-CSF did not alter bone marrow cellularity or increase the number of marrow-derived hematopoietic stem cells. In contrast, a significant splenomegaly occurred, starting on day 6 and continuing until day 17. This was characterized by a pronounced increase in splenic-derived granulocyte (CFU-G), granulocyte-macrophage (CFU-GM), macrophage (CFU-M), megakaryocyte (CFU-MK), and erythroid (BFU-E, CFU-E) stem cells. The increases occurred between days 6 and 9 following the initial administration of rGM-CSF. These findings indicated that the administration of rGM-CSF to cyclophosphamide-treated animals causes an absolute increase in circulating myeloid cells and that these increases are derived from the spleen. The use of recombinant hematopoietic growth factors may permit the administration of more intensive chemotherapy through amelioration of chemically induced leukopenia.  相似文献   

18.
Endothelial cells are a potent source of hematopoietic growth factors when stimulated by soluble products of monocytes. Interleukin 1 (IL 1) is released by activated monocytes and is a mediator of the inflammatory response. We determined whether purified recombinant human IL 1 could stimulate cultured human umbilical vein endothelial cells to release hematopoietic growth factors. As little as 1 U/ml of IL 1 stimulated growth factor production by the endothelial cells, and increasing amounts of IL 1 enhanced growth factor production in a dose-dependent manner. Growth factor production increased within 2 to 4 hr and remained elevated for more than 48 hr. To investigate the molecular basis for these findings, oligonucleotide probes for granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), and multi-CSF were hybridized to poly(A)-containing RNA prepared from unstimulated and IL 1-stimulated endothelial cells. Significant levels of GM-CSF and G-CSF, but not M-CSF or multi-CSF, mRNA were detected in the IL 1-stimulated endothelial cells. Biological assays performed on the IL 1-stimulated endothelial cell-conditioned medium confirmed the presence of both GM- and G-CSF. These results demonstrate that human recombinant IL 1 can stimulate endothelial cells to release GM-CSF and G-CSF, and provide a mechanism by which IL 1 could modulate both granulocyte production and function during the course of an inflammatory response.  相似文献   

19.
The crystal structure of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) has been determined at 2.8 A resolution using multiple isomorphous replacement techniques. There are two molecules in the crystallographic asymmetric unit, which are related by an approximate non-crystallographic 2-fold axis. The overall structure is highly compact and globular with a predominantly hydrophobic core. The main structural feature of rhGM-CSF is a four alpha-helix bundle, which represents approximately 42% of the structure. The helices are arranged in a left-handed antiparallel bundle with two overhand connections. Within the connections is a two-stranded antiparallel beta-sheet. The tertiary structure of rhGM-CSF has a topology similar to that of porcine growth factor and interferon-beta. Most of the proposed critical regions for receptor binding are located on a continuous surface at one end of the molecule that includes the C terminus.  相似文献   

20.
The effects of different activation methods and culture conditions on early development of porcine parthenotes were examined. Three different activation methods were tested: (1) electroporation; (2) electroporation followed by incubation in the presence of butyrolactone I, an inhibitor of cdc2 and cdk2 kinases; and (3) electroporation followed by a treatment with cycloheximide, a blocker of protein synthesis. The activated oocytes were cultured in two different media, NCSU-23 and PZM-3 under 5% CO2 in air. In a separate experiment, the effects of high (approximately 20%) or low (5%) O2 tension on early embryo development were also evaluated. The average pronuclear formation was less (p<0.05) in the electroporated oocytes (83.9+/-1.7%) compared with those activated by electroporation and butyrolactone I or electroporation plus cycloheximide (92.8+/-0.8 and 93.0+/-1.0%). In PZM-3 medium, the average frequencies of blastocyst formation (59.7+/-3.6%) and hatching (10.6+/-1.3%) were greater than those in NCSU-23 medium (39.9+/-3.1% blastocyst formation, p<0.05; and 0.2+/-0.2% hatching; p<0.001). Furthermore, the average nuclear number was also greater (p<0.001) in blastocysts developed in PZM-3 (50.2+/-1.3) than in those developed in NCSU-23 (35.3+/-1.1). Blastocyst formation was similar (p>0.10) among the three activation procedures when parthenotes were cultured in NCSU-23, while in PZM-3 more (p<0.05) parthenotes produced by electroporation plus butyrolactone or electroporation plus cycloheximide developed into blastocysts compared to electroporation alone (64.9+/-5.2 and 68.6+/-3.5% compared with 45.6+/-4.7%). Incidences of apoptotic nuclei were similar (p>0.10) among all treatments. No difference in development was found between parthenotes that developed under high versus low O2 tension (p>0.10). These results demonstrate that activation methods targeting the calcium signaling pathway at several points trigger embryonic development more efficiently than electroporation alone. The data also imply that the PZM-3 medium provides for enhanced culture conditions for the early development of parthenogenetic porcine embryos than NCSU-23.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号