首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interferon-gamma (IFNgamma) has been shown to decrease the expression and activity of lipoprotein lipase (LPL). Hence, we searched for IFNgamma sensitive binding sites within the murine LPL promoter. A region of the LPL promoter was identified that specifically binds nuclear, but not cytosolic, extracts isolated from IFNgamma-treated 3T3-L1 adipocytes. EMSA analysis revealed that two protein complexes bind to this site within the LPL promoter and supershift analysis demonstrated that both of these complexes contained STAT 1 proteins. In addition, we have shown that this effect is specific for IFNgamma, since LIF treatment, which also induces STAT 1, did not confer binding to this site. Interestingly, binding to this site within the LPL promoter could be effectively competed with a STAT 1 binding site that we previously identified in the PPARgamma2 promoter. Also, IFNgamma treatment resulted in decreased levels of LPL protein. In summary, we have identified a STAT 1 binding site within the murine LPL promoter which likely plays a role in the IFNgamma induced decrease of LPL expression.  相似文献   

2.
3.
4.
Effects of cardiotrophin on adipocytes   总被引:2,自引:0,他引:2  
Cardiotrophin (CT-1) is a naturally occurring protein member of the interleukin (IL)-6 cytokine family and signals through the gp130/leukemia inhibitory factor receptor (LIFR) heterodimer. The formation of gp130/LIFR complex triggers the auto/trans-phosphorylation of associated Janus kinases, leading to the activation of Janus kinase/STAT and MAPK (ERK1 and -2) signaling pathways. Since adipocytes express both gp130 and LIFR proteins and are responsive to other IL-6 family cytokines, we examined the effects of CT-1 on 3T3-L1 adipocytes. Our studies have shown that CT-1 administration results in a dose- and time-dependent activation and nuclear translocation of STAT1, -3, -5A, and -5B as well as ERK1 and -2. We also confirmed the ability of CT-1 to induce signaling in fat cells in vivo. Our studies revealed that neither CT-1 nor ciliary neurotrophic factor treatment affected adipocyte differentiation. However, acute CT-1 treatment caused an increase in SOCS-3 mRNA in adipocytes and a transient decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA that was regulated by the binding of STAT1 to the PPARgamma2 promoter. The effects of CT-1 on SOCS-3 and PPARgamma mRNA were independent of MAPK activation. Chronic administration of CT-1 to 3T3-L1 adipocytes resulted in a decrease of both fatty acid synthase and insulin receptor substrate-1 protein expression yet did not effect the expression of a variety of other adipocyte proteins. Moreover, chronic CT-1 treatment resulted in the development of insulin resistance as judged by a decrease in insulin-stimulated glucose uptake. In summary, CT-1 is a potent regulator of signaling in adipocytes in vitro and in vivo, and our current efforts are focused on determining the role of this cardioprotective cytokine on adipocyte physiology.  相似文献   

5.
Growth hormone (GH) diminishes adipose tissue mass in vivo and prolactin (PRL) can also modulate adipocyte metabolism. Both GH and PRL are potent activators of STAT5 and exert a variety of effects on adipocyte gene expression. In this study, we have demonstrated that GH and PRL increase the mRNA of acyl CoA oxidase in 3T3-L1 adipocytes. We also identified seven putative STAT elements in the murine AOX promoter. We observed that GH modulates protein binding to the majority of these promoter elements. However, GH induced very potent binding to -1841 to -1825 of the murine AOX promoter. EMSA supershift analysis revealed that this site was specifically bound by STAT5A, but not by STAT1 or STAT3. Taken together, these data strongly suggest that GH directly induces the expression of AOX in adipocytes through STAT5A binding to the -1841 to -1825 site within the AOX promoter. Our observations are consistent with other studies that demonstrate that STAT5 activators modulate fatty acid oxidation.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
信号转导和转录活化因子3 (STAT3)与趋化因子CX3C配体1 (Fractalkine/CX3CL1)在血管炎症和损伤中起重要作用,为了探讨STAT3是否通过CX3CL1促进血管内皮细胞增殖和迁移,在血管内皮细胞(HUVEC)中过表达或敲降STAT3,通过quantitative real-time PCR、Western blotting实验确定STAT3对CX3CL1表达的影响。构建含有STAT3结合位点及突变STAT3结合位点的CX3CL1启动子荧光素酶报告基因质粒,利用荧光素酶活性分析实验研究STAT3对CX3CL1启动子转录活性的作用。利用MTT实验检测过表达或敲降STAT3或CX3CL1对血管内皮细胞增殖率的影响。利用划痕实验检测过表达或敲降STAT3或CX3CL1对血管内皮细胞迁移率的影响。结果显示,过表达STAT3可以促进CX3CL1表达,敲降STAT3可以使CX3CL1表达下调。STAT3可以直接结合到CX3CL1的启动子促进其转录激活,其促进作用依赖于CX3CL1启动子上的GAS位点。敲降STAT3可以抑制血管内皮细胞的迁移,过表达CX3CL1拮抗该抑制作用。总结得出,STAT3通过结合到CXCL1启动子促进CX3CL1转录与表达进而促进血管内皮的增殖与迁移。  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号