首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The 2'-deoxythymidine analogue 2'-deoxy-4'-thiothymidine has been incorporated, using standard methodology, into a series of dodecadeoxynucleotides containing the EcoRV restriction endonuclease recognition site (GATATC). The stability of these oligodeoxynucleotides and their ability to act as substrates for the restriction endonuclease and associated methylase have been compared with a normal unmodified oligodeoxynucleotide. No problems were encountered in the synthesis despite the presence of a potentially oxidisable sulfur atom in the sugar ring. The analogue had very little effect on the melting temperature of the self-complementary oligoeoxynucleotides so synthesised and all had a CD spectrum compatible with a B-DNA structure. The oligodeoxynucleotide containing one analogue in each strand within the recognition site, adjacent to the bond to be cleaved (i.e. GAXATC, where X is 2'-deoxy-4'-thiothymidine), was neither a substrate for the endonuclease nor was recognized by the associated methylase. When still within the recognition hexanucleotide but two further residues removed from the site of cleavage (i.e. GATAXC), the oligodeoxynucleotide was a poor substrate for both the endonuclease and methylase. Binding of the oligodeoxynucleotide to the endonuclease was unaffected but the kcat value was only 0.03% of the value obtained for the parent oligodeoxynucleotide. These results show that the incorporation of 2'-deoxy-4'-thionucleosides into synthetic oligodeoxynucleotides may shed light on subtle interactions between proteins and their normal substrates and may also show why 2'-deoxy-4'-thiothymidine itself is so toxic in cell culture.  相似文献   

2.
Several 2'-modified ribonucleoside phosphoramidites have been prepared for structure-activity studies of the hammerhead ribozyme. The aim of these studies was to design and synthesize catalytically active and nuclease-resistant ribozymes. Synthetic schemes for stereoselective synthesis of the R isomer of 2'-deoxy-2'-C-allyl uridine and cytidine phosphoramidites, based on the Keck allylation procedure, were developed. Protection of the 2'-amino group in 2'-deoxy-2'-aminouridine was optimized and a method for the convenient preparation of 5'-O-dimethoxytrityl-2'-deoxy-2'-phthalimidouridine 3'-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite) was developed. During the attempted preparation of the 2'-O-t-butyldimethylsilyl-3'-O-phosphoramidite of arabinouridine a reversed regioselectivity in the silylation reaction, compared with the published procedure, was observed, as well as the unexpected formation of the 2,2'-anhydronucleoside. A possible mechanism for this cyclization is proposed. The synthesis of 2'-deoxy-2'-methylene and 2'-deoxy-2'-difluoromethylene uridine phosphoramidites is described. Based on a '5-ribose' model for essential 2'-hydroxyls in the hammerhead ribozyme these 2'-modified monomers were incorporated at positions U4 and/or U7 of the catalytic core. A number of these ribozymes had almost wild-type catalytic activity and improved stability in human serum, compared with an all-RNA molecule.  相似文献   

3.
A facile synthesis of oligodeoxynucleotides (ODN) containing 2'-deoxy-6-thioinosine (dI6S) based on the convertible nucleoside O6-phenyl-2'-deoxyinosine is presented. After standard solid-phase DNA synthesis and removal of the cyanoethyl protecting groups with DBU treatment with aqueous sodium hydrogen sulfide introduces the sulfur functionality, deprotects the other nucleobases and cleaves the ODN from the solid support in a one-pot reaction. In addition, the extinction coefficient of 2'-deoxy-6-thioinosine is determined by enzymatic fragmentation of the resulting ODN in the presence of adenosine deaminase.  相似文献   

4.
Methods are given for the synthesis of derivatives of 4-thiothymidine (4ST), 5-methyl-2-pyrimidinone-1-beta-D(2'-deoxyriboside) (4HT) and 2-thiothymidine (2ST) suitable for incorporation into oligodeoxynucleotides by the cyanoethyl phosphoramidite method. 4HT and 2ST are incorporated with no base protection but the sulphur atom in 4ST is protected with an S-sulphenylmethyl (-SCH3) function. This can be removed with dithiothreitol after synthesis. These T analogues have been incorporated into GACGATATCGTC, a self-complementary dodecamer containing the Eco RV recognition site (underlined), in place of the two T residues within this site. Although pure dodecamers are obtained in each case the syntheses are not as efficient as those seen when normal unmodified bases are used mainly due to the chemical reactivity of 4ST, 4HT and 2ST. Some of the chemical properties of oligonucleotides containing these bases (reactivity towards NH3) as well as their physical properties (melting temperatures, U.V., fluorescence and circular dichroism spectra) have been determined and are discussed.  相似文献   

5.
3'-Amino-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-3'-N,5'(R)-C-ethylenethymidine (6) was synthesized starting from 3'-azido-3'-deoxythymidine. Condensation of 6 with 5'O-(H-phosphonyl)thymidine and 5'-O-(p-nitrophenoxycarbonyl)thymidine derivatives gave dinucleotide and dinucleoside derivatives, respectively, which were incorporated into oligodeoxynucleotides (ODNs). Tm data of the modified ODNs are also presented.  相似文献   

6.
7.
In order to develop novel antigene molecules forming thermally stable triplexes with target DNAs and having nuclease resistance properties, we synthesized oligodeoxynucleotides (ODNs) with various lengths of aminoalkyl-linkers at the 4'alpha position of thymidine and the aminoethyl-linker at the 4'alpha position of 2'-deoxy-5-methylcytidine. Thermal stability of triplexes between these ODNs and a DNA duplex was studied by thermal denaturation. The ODNs containing the nucleoside 2 with the aminoethyl-linker or the nucleoside 3 with the aminopropyl-linker thermally stabilized the triplexes, whereas the ODNs containing the nucleoside 1 with the aminomethyl-linker or the nucleoside 4 with the 2-[N-(2-aminoethyl)carbamoyl]oxy]ethyl-linker thermally destabilized the triplexes. The ODNs containing 2 were the most efficient at stabilizing the triplexes with the target DNA. The ODNs containing 4'alpha-C-(2-aminoethyl)-2'-deoxy-5-methylcytidine (5) also efficiently stabilized the triplexes with the target DNA. Stability of the ODN containing 5 to nucleolytic hydrolysis by snake venom phosphodiesterase (a 3'-exonuclease) was studied. It was found that the ODN containing 5 was more resistant to nucleolytic digestion by the enzyme than an unmodified ODN. In a previous paper, we reported that the ODNs containing 2 were more resistant to nucleolytic digestion by DNase I (an endonuclease) than the unmodified ODNs. Thus, it was found that the ODNs containing 4'alpha-C-(2-aminoethyl)-2'-deoxynucleosides were good candidates for antigene molecules.  相似文献   

8.
B Faucon  J L Mergny    C Hlne 《Nucleic acids research》1996,24(16):3181-3188
Exon 5 of the human aprt gene contains an oligo-purine-oligopyrimidine stretch of 17 bp (5'-CCCTCTTCTCTCTCCT-3') within the coding region. (T,C)-, (G,T)- and (G,A)-containing oligonucleotides were compared for their ability to form stable triple helices with their DNA target. (G,T) oligodeoxynucleotides, whether parallel or antiparallel, were unable to bind to this sequence. This is in contrast to (G,A) (purine) and (T,C) (pyrimidine) oligonucleotides, which bind to the duplex at near neutral pH. Binding was highly sequence specific, as unrelated competitors were unable to interfere with target recognition. A major difference between the purine and pyrimidine oligodeoxynucleotides was observed in the kinetics of binding: the (G,A) oligonucleotide binds to its target much faster than the (T,C) oligomer. With the purine oligonucleotide, complete binding was achieved in a matter of minutes at micromolar concentrations, whereas several hours were required with the pyrimidine oligomer. Thus, the general observation that triplex formation is slow with pyrimidine oligodeoxynucleotides does not hold for (G,A) oligodeoxynucleotides. Purine and pyrimidine oligodeoxynucleotides covalently linked to a psoralen group were able to induce crosslinks on the double-stranded DNA target upon UV irradiation. This study provides a detailed comparison of the different types of DNA triplexes under the same experimental conditions.  相似文献   

9.
The catalytic core of a 10-23 DNAzyme was modified introducing conformationally restricted nucleosides such as (2'R)-, (2'S)-2'-deoxy-2'-C-methyluridine, (2'R)-, (2'S)-2'-deoxy-2'-C-methylcytidine, 2,2'-anhydrouridine and LNA-C, in one, two or three positions. Catalytic activities under pseudo first order conditions were compared at different Mg(2+) concentrations using a short RNA substrate. At low Mg(2+) concentrations, triple modified DNAzymes with similar kinetic performance to that displayed by the non-modified control were identified. In the search for a partial explanation of the obtained results, in silico studies were carried out in order to explore the conformational behavior of 2'-deoxy-2'-C-methylpyrimidines in the context of a loop structure, suggesting that at least partial flexibility is needed for the maintenance of activity. Finally, the modified 2'-C-methyl DNAzyme activity was tested assessing the inhibition of Stat3 expression and the decrease in cell proliferation using the human breast cancer cell line T47D.  相似文献   

10.
Pseudo-complementary peptide nucleic acid (pcPNA) is a DNA analog in which modified DNA bases 2,6-diaminopurine (D) and 2-thiouracil (U(s)) 'decorate' a poly[N-(2-aminoethyl)glycine] backbone, together with guanine (G) and cytosine (C). One of the most significant characteristics of pcPNA is its ability to effect double-duplex invasion of predetermined DNA sites inducing various changes in the biological and the physicochemical properties of the DNA. This protocol describes solid-phase synthesis of pcPNA. The monomers for G and C are commercially available, but the monomers for D and U(s) need to be synthesized (or can be ordered to custom synthesis companies). Otherwise, the procedure is the same as that employed for Boc-strategy synthesis of conventional PNA. This protocol, if the synthesis of D and U(s) monomers is not factored in, takes approximately 7 d to complete.  相似文献   

11.
5-(1-Naphthalenylethynyl)-2'-deoxyuridine ((N)U) and 5-[(4-cyano-1-naphthalenyl)ethynyl]-2'-deoxyuridine ((CN)U) were synthesized and incorporated into oligodeoxynucleotides. Fluorescence emissions of modified duplexes containing double (N)U were efficiently quenched depending upon the sequence pattern of the naphthalenes in DNA major groove, as compared to the duplex possessing single (N)U. When one of the naphthalene moieties has a cyano substituent, the exciplex emission from the chromophores in DNA major groove was observed at longer wavelength.  相似文献   

12.
Methylphosphonate (PC) backbone oligodeoxynucleotides complementary to the 5'-terminal nucleotides of U1 and U2 small nuclear (sn) RNAs do not elicit RNase H action under conditions in which natural (phosphodiester) oligodeoxynucleotides yield extensive RNase H cleavage. We show here that antisense PC oligonucleotides can mask sites in U1 and U2 snRNPs that are required for spliceosome formation. We further report that biotinylated derivatives of antisense PC oligos can be used for affinity selection of U1 and U2 snRNPs.  相似文献   

13.
The impact of 2'-deoxy-2'-fluoroarabinonucleotide residues (2'F-araN) on different G-quadruplexes derived from a thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), an anti-HIV phosphorothioate aptamer PS-d(T2G4T2) and a DNA telomeric sequence d(G4T4G4) via UV thermal melting (T(m)) and circular dichroism (CD) experiments has been investigated. Generally, replacement of deoxyguanosines that adopt the anti conformation (anti-guanines) with 2'F-araG can stabilize G-quartets and maintain the quadruplex conformation, while replacement of syn-guanines with 2'F-araG is not favored and results in a dramatic switch to an alternative quadruplex conformation. It was found that incorporation of 2'F-araG or T residues into a thrombin-binding DNA G-quadruplex stabilizes the complex (DeltaT(m) up to approximately +3 degrees C/2'F-araN modification); 2'F-araN units also increased the half-life in 10% fetal bovine serum (FBS) up to 48-fold. Two modified thrombin-binding aptamers (PG13 and PG14) show an approximately 4-fold increase in binding affinity to thrombin, as assessed via a nitrocellulose filter binding assay, both with increased thermal stability (approximately 1 degrees C/2'F-ANA modification increase in T(m)) and nuclease resistance (4-7-fold) as well. Therefore, the 2'-deoxy-2'-fluoro-d-arabinonucleic acid (2'F-ANA) modification is well suited to tune (and improve) the physicochemical and biological properties of naturally occurring DNA G-quartets.  相似文献   

14.
Oligodeoxynucleotides modified at both 5'- and 3'-ends with inverted thymidine (5'-,3'-inverted T) were introduced as new reagents for antisense strategies. These modifications were performed to make the oligodeoxynucleotides resistant to nucleases. The effectiveness of these oligodeoxynucleotides was evaluated in terms of inhibition of synthesis of midkine (MK), a heparin-binding growth factor, and consequent inhibition of growth of CMT-93 mouse rectal carcinoma cells. 5'-,3'-Inverted T antisense MK suppressed synthesis of MK by CMT-93 cells and their growth in culture. Furthermore, 5'-,3'-inverted T oligodeoxynucleotides exhibited less cytotoxicity and better stability than phosphorothioate oligodeoxynucleotides. When 5'-,3'-inverted T antisense MK was mixed with atelocollagen, and injected into CMT-93 tumors pregrown in nude mice, tumor growth was markedly suppressed as compared with tumors injected with sense controls. The suppressive effect of 5'-,3'-inverted T antisense MK on tumor growth was stronger than that of phosphorothioate antisense MK. These findings indicated the usefulness of inverted thymidine-modified antisense oligodeoxynucleotides as a new reagent instead of phosphorothioate-modified oligodeoxynucleotides.  相似文献   

15.
Based on the discovery of beta-D-2'-deoxy-2'-fluorocytidine as a potent anti-hepatitis C virus (HCV) agent, a series of beta-D- and L-2'-deoxy-2'-fluoroibonucleosides with modifications at 5 and/or 4 positions were synthesized and evaluated for their in vitro activity against HCV and bovine viral diarrhea virus (BVDV). The introduction of the 2'-fluoro group was achieved by either fluorination of 2,2'-anhydronucleosides with hydrogen fluoride-pyridine or potassium fluoride, or a fluorination of arabinonucleosides with DAST. Among the 27 analogues synthesized, only the 5-fluoro compounds, namely beta-D-2'-deoxy-2',5-difluorocytidine (5), had anti-HCV activity in the subgenomic HCV replicon cell line, and inhibitory activity against ribosomal RNA. As beta-D-N4-hydroxycytidine (NHC) had previously shown potent anti-HCV activity, the two functionalities of the N4-hydroxyl and the 2'-fluoro were combined into one molecule, yielding beta-D-2'-deoxy-2'-fluoro-N4-hydroxycytidine (12). However, this nucleoside showed neither anti-HCV activity nor toxicity. All the L-forms of the analogues were devoid of anti-HCV activity. None of the compounds showed anti-BVDV activity, suggesting that the BVDV system cannot reliably predict anti-HCV activity in vitro.  相似文献   

16.
New technologies are needed to characterize the migration, survival, and function of antigen-specific T cells in vivo. Here, we demonstrate that Epstein-Barr virus (EBV)--specific T cells transduced with vectors encoding herpes simplex virus-1 thymidine kinase (HSV-TK) selectively accumulate radiolabeled 2'-fluoro-2'-deoxy-1-beta-D-arabinofuranosyl-5-iodouracil (FIAU). After adoptive transfer, HSV-TK+ T cells labeled in vitro or in vivo with [131I]FIAU or [124I]FIAU can be noninvasively tracked in SCID mice bearing human tumor xenografts by serial images obtained by scintigraphy or positron emission tomography (PET), respectively. These T cells selectively accumulate in EBV+ tumors expressing the T cells' restricting HLA allele but not in EBV- or HLA-mismatched tumors. The concentrations of transduced T cells detected in tumors and tissues are closely correlated with the concentrations of label retained at each site. Radiolabeled transduced T cells retain their capacity to eliminate targeted tumors selectively. This technique for imaging the migration of ex vivo-transduced antigen-specific T cells in vivo is informative, nontoxic, and potentially applicable to humans.  相似文献   

17.
DNA damage caused by catechol estrogens has been shown to play an etiologic role in tumor formation. Catechol estrogens are reactive to DNA and form several DNA adducts via their quinone forms. To explore the mutagenic properties of 2-hydroxyestrogen-derived DNA adducts in mammalian cells, N(2)-(2-hydroxyestrogen-6-yl)-2'-deoxyguanosine and N(6)-(2-hydroxyestrogen-6-yl)-2'-deoxyadenosine adducts induced by quinones of 2-hydroxyestrone, 2-hydroxyestradiol, or 2-hydroxyestriol were incorporated site-specifically into the oligodeoxynucleotides ((5)(')TCCTCCTCXCCTCTC, where X is dG, dA, 2-OHE-N(2)-dG, or 2-OHE-N(6)-dA). The modified oligodeoxynucleotides were inserted into single-stranded phagemid vectors followed by transfection into simian kidney (COS-7) cells. Preferential incorporation of dCMP, the correct base, was observed opposite all 2-OHE-N(2)-dG adducts. Only targeted G --> T transversions were detected; the highest mutation frequency (18.2%) was observed opposite the 2-OHE(2)-N(2)-dG adduct, followed by 2-OHE(1)-N(2)-dG (4.4%) and 2-OHE(3)-N(2)-dG (1.3%). When 2-OHE-N(6)-dA adducts were used, preferential incorporation of dTMP, the correct base, was observed. Targeted mutations representing A --> T transversions were detected, accompanied by small numbers of A --> G transitions. The highest mutation frequencies were observed with 2-OHE(1)-N(6)-dA and 2-OHE(3)-N(6)-dA (14.5 and 14.1%, respectively), while 2-OHE(2)-N(6)-dA exhibited a mutation frequency of only 6.0%. No mutations were detected with vectors containing unmodified oligodeoxynucleotides. Thus, 2-OHE quinone-derived DNA adducts are mutagenic, generating primarily G --> T and A --> T mutations in mammalian cells. The mutational frequency varied depending on the nature of the 2-OHE moiety.  相似文献   

18.
C Goffin  V Bailly    W G Verly 《Nucleic acids research》1987,15(21):8755-8771
Using synthetic oligodeoxynucleotides with 3'-OH ends and 32P-labelled 5'-phosphate ends and the technique of polyacrylamide gel electrophoresis, it is shown that, in the presence of the complementary polynucleotide, an AP (apurinic or apyrimidinic) site at the 3' or the 5' end of the labelled oligodeoxynucleotides does not prevent their ligation by T4 DNA ligase, although the reaction rate is decreased. This decrease is more severe when the AP site is at the 3' end; the activated intermediates accumulate showing that it is the efficiency of the adenyl-5'-phosphate attack by the 3'-OH of the base-free deoxyribose which is mostly perturbed. Using the same technique, it is shown that a mispaired base at the 3' or 5' end of oligodeoxynucleotides does not prevent their ligation. A one-nucleotide gap, limited by 3'-OH and 5'-phosphate, can also be closed by T4 DNA ligase although with difficulty; here again the activation of the 5'-phosphate end does not seem to be slowed down, but rather the 3'-OH attack of the adenyl-5'-phosphate. All these anomalous ligations take place with the nick or the gap in front of a continuous complementary strand. Blunt ends ligation of correct duplexes occurs readily; however an AP site or a mispaired base at the 3' or 5' end of one strand of the duplexes prevents ligation between these strands. But a missing nucleotide (responsible for one unpaired nucleotide protruding at the 3' or 5' end of the complementary strand) does not stop ligation of the shorter oligodeoxynucleotides between independent duplexes.  相似文献   

19.
Based on the discovery of (2'R)-d-2'-deoxy-2'-fluorocytidine as a potent anti-hepatitis C virus (HCV) agent, a series of d- and l-2'-deoxy-2'-fluororibonucleosides with modifications at 5- and/or 4-positions were synthesized and evaluated for their in vitro activity against HCV and bovine viral diarrhea virus (BVDV). The key step in the synthesis, the introduction of 2'-fluoro group, was achieved by either fluorination of 2,2'-anhydronucleosides with hydrogen fluoride-pyridine or potassium fluoride, or a fluorination of arabinonucleosides with DAST. Among the 27 analogues synthesized, only the 5-fluoro compound, namely (2'R)-d-2'-deoxy-2',5-difluorocytidine (13), demonstrated potent anti-HCV activity and toxicity to ribosomal RNA. The replacement of the 4-amino group with a thiol group resulted in the loss of activity, while the 4-methylthio substituted analogue (25) exhibited inhibition of ribosomal RNA. As N(4)-hydroxycytidine (NHC) had previously shown potent anti-HCV activity, we combined the two functionalities of the N(4)-hydroxyl and the 2'-fluoro into one molecule, resulting (2'R)-d-2'-deoxy-2'-fluoro-N(4)-hydroxycytidine (23). However, this nucleoside showed neither anti-HCV activity nor toxicity. All the l-forms of the analogues were devoid of anti-HCV activity. None of the compounds showed anti-BVDV activity, suggesting that the BVDV system cannot always predict anti-HCV activity.  相似文献   

20.
Abasic sites represent the most frequent lesion in DNA. Since several events generating abasic sites concern guanines, this damage is particularly important in quadruplex forming G-rich sequences, many of which are believed to be involved in several biological roles. However, the effects of abasic sites in sequences forming quadruplexes have been poorly studied. Here, we investigated the effects of abasic site mimics on structural, thermodynamic and kinetic properties of parallel quadruplexes. Investigation concerned five oligodeoxynucleotides based on the sequence d(TGGGGGT), in which all guanines have been replaced, one at a time, by an abasic site mimic (dS). All sequences preserve their ability to form quadruplexes; however, both spectroscopic and kinetic experiments point to sequence-dependent different effects on the structural flexibility and stability. Sequences d(TSGGGGT) and d(TGGGGST) form quite stable quadruplexes; however, for the other sequences, the introduction of the dS in proximity of the 3′-end decreases the stability more considerably than the 5′-end. Noteworthy, sequence d(TGSGGGT) forms a quadruplex where dS does not hamper the stacking between the G-tetrads adjacent to it. These results strongly argue for the central role of apurinic/apyrimidinic site damages and they encourage the production of further studies to better delineate the consequences of their presence in the biological relevant regions of the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号