首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Our laboratory has previously reported that the exposure of smooth muscle cells (SMC) to the cyclic strain results in significant stimulation of protein kinase C (PKC) activity by translocating the enzyme from the cytosol to the particulate fraction. We now sought to examine the strain-induced translocation of individual PKC isoforms in SMC. Confluent bovine aortic SMC grown on collagen type I-coated plates were exposed to cyclic strain for up to 100 s at average 10% strain with 60 cycles/min. Immunoblotting analysis demonstrates that SMC express PKC-alpha, -beta and -zeta in both cytosolic and particulate fractions. Especially, PKC-alpha and -zeta were predominantly expressed in the cytosolic fraction. However, cyclic strain significantly (P < 0.05) increased PKC-alpha and -zeta in the particulate fraction and decreased in the cytosolic fraction. Thus, the cyclic strain-mediated stimulation of PKC activity in SMC may be due to the translocation of PKC-alpha and -zeta from the cytosolic to the particulate fraction. These results demonstrate that mechanical deformation causes rapid translocation of PKC isoforms, which may initiate a cascade of proliferation responses of SMC since NF-kappaB, which is involved in the cellular proliferation has been known to be activated by these PKC isoforms.  相似文献   

2.
To localize activated protein kinase C (PKC) in smooth muscle cells, an antibody directed to the catalytic site of the enzyme was used to assess PKC distribution by immunofluorescence techniques in gastric smooth muscle cells isolated from Bufo marinus. An antibody to vinculin was used to delineate the cell membrane. High-resolution three-dimensional images of immunofluorescence were obtained from a series of images collected through focus with a digital imaging microscope. Cells were untreated or treated with agents that increase PKC activity (10 microM carbachol for 1 min, 1 microM phorbol 12-myristate 13-acetate (PMA) for 10 min), or have no effect on PKC activity (1 micrometer 4-alpha phorbol, 12,13-didecanoate (4-alpha PMA)). In unstimulated cells, activated PKC and vinculin were located and organized at the cell surface. Cell cytosol labeling for activated PKC was sparse and diffuse and was absent for vinculin. After treatment with carbachol, which stimulates contraction and PKC activity, in addition to the membrane localization, the activated PKC exhibited a pronounced cytosolic fibrillar distribution and an increased total fluorescence intensity relative to vinculin. The distributions of activated PKC observed after PMA but not 4-alpha PMA were similar to those observed with carbachol. Our results indicate that in resting cells there is a pool of activated PKC near the cell membrane, and that after stimulation activated PKC is no longer membrane-confined, but is present throughout the cytosol. Active PKC appears to associate with contractile filaments, supporting a possible role in modulation of contraction.  相似文献   

3.
To characterize age-induced effects on muscle protein kinase C (PKC) and its regulation by the steroid hormone 1,25(OH)2-vitamin D3 [1,25(OH)2D3], changes in PKC activity and the expression and translocation of the specific PKC conventional isoforms alpha and beta, novel isoforms delta, epsilon, and theta and atypical isoform zeta were studied in homogenates and subcellular fractions from skeletal muscle of young (3 months) and aged (24 months) rats treated in vitro with 1,25(OH)2D3. The hormone (10(-9) M) increased total and membrane PKC activity, within 1 min, and these effects were completely blunted in muscle from aged rats. The presence of PKC isoenzymes was shown by Western blot analysis with the use of specific antibodies. The expression of PKC alpha, beta and delta was greatly diminished in old rats, whereas age-related changes were less pronounced in the isoforms epsilon, theta and zeta. After a short exposure (1 min) of muscle to 1,25(OH)2D3, increased amounts of PKC alpha and beta in muscle membranes and reverse translocation (from membrane to cytosol) of PKC epsilon were observed only in young animals. The data indicate that, in rat muscle, ageing impairs calcium-dependent PKC (alpha and beta) and calcium-independent PKC (delta, epsilon, theta and zeta) signal transduction pathways under selective regulation by 1,25(OH)2D3.  相似文献   

4.
It is controversial whether nitric oxide (NO) is protective or deleterious against ischemia-reperfusion injury. We examined the effect of NO on PKC isoform translocation and protection against ischemia-reperfusion injury in perfused heart. An NO synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester, 3.0 microM), administered only during reperfusion but not during ischemia, inhibited the translocation of PKC-alpha, -delta and -epsilon isoforms to the nucleus-myofibril fraction and the translocation of PKC-alpha to the membrane fraction after ischemia (20 min) and reperfusion (10 min) in the perfused rat heart. NO donors, 3-morpholinosydnonimine (SIN-1) or S-nitroso-N-acetylpenicillamine (SNAP) activated purified PKC in vitro. SIN-1 also induced PKC isoform translocation in perfused heart. On the other hand, PKC selective inhibitor, calphostin C (0.2 microM) or chelerythrine (1.0 microM), aggravated the contractile dysfunction of ischemic heart during reperfusion, when they were perfused during reperfusion. These data suggest that NO generated during reperfusion following ischemia activates PKC isoforms and may protect the heart against contractile dysfunction in the perfused rat heart.  相似文献   

5.
The roles of protein kinase C (PKC) isoforms in cholinergic potentiation of glucose-induced insulin secretion were investigated in rat pancreatic islets. Western-blot analysis showed the presence of PKC-alpha, betaII, delta, epsilon, eta, and zeta, but not PKC-betaI, gamma, or iota, in the islets. Carbachol (CCh) caused translocations of PKC-alpha, betaII, delta, and epsilon from the cytosol to the plasma membrane. CCh facilitated 7-mM glucose-induced insulin secretion from isolated rat islets. The CCh-stimulated insulin secretion was significantly suppressed by the generic PKC inhibitor chelerythrine. In contrast, Go 6976, an inhibitor of conventional PKC isoforms, had no effect on the insulin secretion stimulated by CCh, although it significantly inhibited that induced by phorbol 12-myristate 13-acetate. These results suggest that the novel PKC isoforms activated by CCh, i.e., PKC-delta and/or epsilon, participate in the stimulatory effect of CCh on insulin secretion.  相似文献   

6.
Protein kinase C (PKC) has been proposed to be involved in the regulation of vascular smooth muscle (VSM) contractile activity. However, little is known in detail about the activation of this kinase or specific isozymes of this kinase by contractile stimuli in VSM. As an index of PKC activation, Ca(2+)- and phospholipid-dependent histone IIIS kinase activity was measured in the particulate fraction from individual strips of isometrically contracting carotid arterial smooth muscle. Phorbol 12,13-dibutyrate (PDB) increased PKC activity in the particulate fraction (155% over resting value by 15 min) with a time course which paralleled or preceded force development. Stimulation with the agonist histamine (10(-5) M) resulted in rapid increases in both force and particulate fraction PKC activity which was maximal by 2 min (increase of 139%) and partially sustained over 45 min (increase of 41%). KCl (109 mM), which evokes a sustained contractile response, caused a slow increase (124% by 45 min) in particulate fraction PKC activity. No significant increases in activator-independent histone kinase activity were observed in response to any stimulus tested. PKC alpha and PKC beta were identified as the principal Ca2+/phospholipid-dependent PKC isozymes expressed in this tissue. In unstimulated arterial tissue, the ratio of immunodetectable isozyme content (alpha:beta) was estimated to be 1:1 in the particulate and 1.5:1 in the cytosolic fractions. Upon stimulation with each of the three contractile stimuli, particulate fraction PKC content assessed by immunoblotting increased with a time course and to an extent comparable to the observed changes in PKC activity. There was no evidence of differential regulation of the PKC alpha or -beta isozymes by PDB compared to the other contractile stimuli. These results indicate that diverse contractile stimuli are capable of tonically activating PKC in preparations of functional smooth muscle, and are consistent with a functional role for PKC alpha and/or -beta in the regulation of normal smooth muscle contractile activity.  相似文献   

7.
The subcellular redistribution of protein kinase C family members (alpha, beta, gamma, delta, epsilon and zeta isoforms) was examined in response to treatment with 12-O-tetradecanoyl-phorbol-13 acetate (TPA) or nerve growth factor (NGF) in a synaptosomal-enriched P2 fraction from rat brain. Treatment with TPA affected members of the classical-PKC family (alpha, beta and gamma), resulting in a final loss of total protein of each isoenzyme. The kinetics of changes of members of the novel-PKC family are different, the delta isoform being translocated, but not down-regulated, while the epsilon isoform showing only a slight diminishing of immunoreactivity in the soluble and particulate fractions. The atypical-PKC zeta isoform was not translocated in response to TPA. Incubation with NGF induced a loss of immunoreactivity of the cytosolic alpha, beta and epsilon isoforms, but the membrane fractions of these isoforms were not appreciably affected. In contrast, a marked translocation from cytosol to membrane was observed in the case of the gamma and delta isoforms. The zeta isoform presented a slight translocation from the particulate fraction to the soluble fraction. Thus, the results show that the effects of TPA and NGF on PKC isoforms are not coincident in synaptosomes, the 6 isoform being activated and not down-regulated by both treatments, whereas the gamma isoform is only down-regulated in the case of TPA, but presents sustained translocation with NGF, indicating that PKC isoform-specific degradation pathways exist in synaptic terminals. The effects of NGF on PKC isoforms coexist with an increase in NGF-induced polyphosphoinositide hydrolysis, suggesting the participation of phospholipases.  相似文献   

8.
Freshly enzymatically isolated pancreatic acini from lactating and weaning Wistar rats were used to investigate the role of protein kinase C (PKC) isoforms during these physiologically relevant pancreatic secretory and growth processes. The combination of immunoblot and immunohistochemical analysis shows that the PKC isoforms alpha, delta, and epsilon are present in pancreatic acini from control, lactating and weaning rats. A vesicular distribution of PKC-alpha, -delta, and -epsilon was detected by immunohistochemical analysis in the pancreatic acini from all the experimental groups. PKC-delta showed the strongest PKC immunoreactivity (PKC-IR). In this vesicular distribution, PKC-IR was located at the apical region of the acinar cells. No differences were observed between control, lactating and weaning rats. However, the immunoblot analysis of pancreatic PKC isoforms during lactation and weaning showed a significant translocation of PKC-delta from the cytosol to the membrane fraction when compared with control animals. Translocation of PKC isoforms (alpha, delta and epsilon) in response to 12-O-tetradecanoyl phorbol 13-acetate (TPA) 1 microM (15 min, 37 degrees C) was comparable in pancreatic acini from control, lactating and weaning rats. In the control group, a significant translocation of all the isoforms (alpha, delta and epsilon) from the cytosol to the membrane was observed. The PKC isoform most translocated by TPA was PKC-delta. In contrast, no statistically significant increase in PKC-delta translocation was detected in pancreatic acini isolated from lactating or weaning rats. These results suggest that the PKC isoforms are already translocated to the surface of the acinar cells from lactating or weaning rats. In addition, they suggest that isoform specific spatial PKC distribution and translocation occur in association with the growth response previously described in the rat exocrine pancreas during lactation and weaning.  相似文献   

9.
The responses of human neutrophils (PMN) involve reorganization and phosphorylation of cytoskeletal components. We investigated the translocation of protein kinase C (PKC) isoforms to PMN cytoskeletal (Triton-insoluble) fractions, in conjunction with activation of the respiratory burst enzyme NADPH oxidase. In resting PMN, PKC-delta (29%) and small amounts of PKC-alpha (0.6%), but not PKC-betaII, were present in cytoskeletal fractions. Upon stimulation with the PKC agonist PMA, the levels of PKC-alpha, PKC-betaII, and PKC-delta increased in the cytoskeletal fraction, concomitant with a decrease in the noncytoskeletal (Triton-soluble) fractions. PKC-delta maximally associated with cytoskeletal fractions at 160 nM PMA and then declined, while PKC-alpha and PKC-betaII plateaued at 300 nM PMA. Translocation of PKC-delta was maximal by 2 min and sustained for at least 10 min. Translocation of PKC-alpha and PKC-betaII was biphasic, plateauing at 2-3 min and then increasing up to 10 min. Under maximal stimulation conditions, PKC isoforms were entirely cytoskeletal associated. Translocation of the NADPH oxidase component p47phox to the cytoskeletal fraction correlated with translocation of PKC-alpha and PKC-betaII, but not with translocation of PKC-delta. Oxidase activity in cytoskeletal fractions paralleled translocation of PKC-alpha, PKC-betaII, and p47phox. Stimulation with 1,2-dioctanoylglycerol resulted in little translocation of PKC isoforms or p47phox, and in minimal oxidase activity. We conclude that conventional PKC isoforms (PKC-alpha and/or PKC-betaII) may regulate PMA-stimulated cytoskeletal association and activation of NADPH oxidase. PKC-delta may modulate other PMN responses that involve cytoskeletal components.  相似文献   

10.
Hyperammonemia is responsible for most neurological alterations in patients with hepatic encephalopathy by mechanisms that remain unclear. Hyperammonemia alters phosphorylation of neuronal protein kinase C (PKC) substrates and impairs NMDA receptor-associated signal transduction. The aim of this work was to analyse the effects of hyperammonemia on the amount and intracellular distribution of PKC isoforms and on translocation of each isoform induced by NMDA receptor activation in cerebellar neurons. Chronic hyperammonemia alters differentially the intracellular distribution of PKC isoforms. The amount of all isoforms (except PKC zeta) was reduced (17-50%) in the particulate fraction. The contents of alpha, beta1, and epsilon isoforms decreased similarly in cytosol (65-78%) and membranes (66-83%), whereas gamma, delta, and theta; isoforms increased in cytosol but decreased in membranes, and zeta isoform increased in membranes and decreased in cytosol. Chronic hyperammonemia also affects differentially NMDA-induced translocation of PKC isoforms. NMDA-induced translocation of PKC alpha and beta is prevented by ammonia, whereas PKC gamma, delta, epsilon, or theta; translocation is not affected. Inhibition of phospholipase C did not affect PKC alpha translocation but reduced significantly PKC gamma translocation, indicating that NMDA-induced translocation of PKC alpha is mediated by Ca2+, whereas PKC gamma translocation is mediated by diacylglycerol. Chronic hyperammonemia reduces Ca+2-mediated but not diacylglycerol-mediated translocation of PKC isoforms induced by NMDA.  相似文献   

11.
In this study we report that protein kinase C zeta (PKC zeta), one of the atypical isoforms of the PKC family located predominantly in cytosol, is redistributed by C2-ceramide treatment in isolated hepatocytes. PKC zeta increased in membrane and nuclear fractions after 30 min of treatment with C2-ceramide in a dose- and time-dependent manner. The action of C2-ceramide was inhibited by wortmannin and LY 294002, indicating that C2-ceramide-induced PKC zeta increase in both nucleus and membrane fractions is mediated by phosphatidylinositol 3-kinase (PI3-kinase) activation. In addition, a significant translocation of PI3-kinase to the nucleus was observed after C2-ceramide treatment.  相似文献   

12.
The role of the Ca2+/phospholipid-dependent protein kinase C (PKC) in cholinergic potentiation of insulin release was investigated by measuring islet PKC activity and insulin secretion in response to carbachol (CCh), a cholinergic agonist. CCh caused a dose-dependent increase in insulin secretion from cultured rat islets at stimulatory glucose concentrations (greater than or equal to 7 mM), with maximal effects observed at 100 microM. Short-term exposure (5 min) of islets to 500 microM-CCh at 2 mM- or 20 mM-glucose resulted in redistribution of islet PKC activity from a predominantly cytosolic location to a membrane-associated form. Prolonged exposure (greater than 20 h) of islets to 200 nM-phorbol myristate acetate caused a virtual depletion of PKC activity associated with the islet cytosolic fraction. Under these conditions of PKC down-regulation, the potentiation of glucose-stimulated insulin secretion by CCh (500 microM) was significantly decreased, but not abolished. CCh stimulated the hydrolysis of inositol phospholipids in both normal and PKC-depleted islets, as assessed by the generation of radiolabelled inositol phosphates. These results suggest that the potentiation of glucose-induced insulin secretion by cholinergic agonists is partly mediated by activation of PKC as a consequence of phospholipid hydrolysis.  相似文献   

13.
Halogenated aromatic hydrocarbon including polychlorinated biphenyls (PCBs) are persistent and bioaccumulative environmental toxicants. Although health effects associated with exposure to these chemicals, including motor dysfunction and impairment in memory and learning, have been identified, their molecular site of action is unknown. Previous study from this laboratory demonstrated that, while ortho PCBs perturbed intracellular signaling mechanisms including Ca2+ homeostasis, receptor-mediated inositol phosphate production and translocation of PKC, non-ortho PCBs did not. Since PKC signaling pathway is implicated in the modulation of motor behavior, as well as learning and memory, and the roles of PKC are isoform-specific, we have now studied the effects of two structurally distinct PCBs on isoforms of PKC in cerebellar granule cell culture model. Cells were exposed to 2,2'-dichlorobiphenyl (ortho PCB; 2,2'-DCB) or 4,4'-dichlorobiphenyl (non-ortho PCB; 4,4'-DCB) for 15 min, respectively, and subsequently fractionated and immunoblotted against the selected PKC monoclonal antibodies (alpha, gamma, delta, epsilon, lambda, iota). While 2,2'-DCB induced a translocation of PKC-alpha [cytosol (% control): 54 +/- 12 at 25 microM and 66 +/- 10 at 50 microM; membrane (% control): 186 +/- 37 at 25 microM and 200 +/- 48 at 50 microM] and -epsilon [cytosol (% control): 92 +/- 12 at 25 microM and 97 +/- 15 at 50 microM; membrane (% control): 143 +/- 23 at 25 microM and 192 +/- 24 at 50 microM] from cytosol to membrane fraction in a concentration-dependent manner, 4,4'-DCB had no effects. 2,2'-DCB induced translocation of PKC-alpha was blocked by pretreatment with sphingosine, suggesting a possible role of sphingolipid pathway. Although reports on implication of PKC-gamma with learning and memory are relatively extensive, the expression of this particular isoform in the primary cerebellar granule cells was below the detectable level. PKC-delta, -lambda and -iota were present in these cells, but were not altered by PCB exposure. These results suggest that the effects of 2,2'-DCB on PKC is isoform-dependent and PKC-alpha as well as PKC-epsilon may be target molecules for ortho-PCBs in neuronal cells.  相似文献   

14.
We investigated the ability of the antidementia agents, nicergoline, aniracetam and hydergine to stimulate PKC mediated alpha-secretase amyloid precursor protein (APP) processing in cultured human neuroblastoma SH-SY5Y cells. Western immunoblotting of cell conditioned media using the Mabs 22C11 and 6E10 revealed the presence of 2 bands with molecular mass of 90 and 120 kDa, corresponding to possible alternatively glycosylated forms of secreted APP (APPs). Short-term (30 min and 2 h) treatment of cells with nicergoline gave an increased intensity of both bands, compared to non-treated cells. Maximal nicergoline effects, of the order of 150-200% over basal APPs release, were seen at concentrations between 1 and 10 microM. Under the same condition, 1 microM PdBu, used as a positive control, gave 500-1000% increases of basal APPs release. In contrast, aniracetam and hydergine, did not show any effect on APPs secretion. 2 h treatment with nicergoline had no effect on cellular full-length APP levels, as determined by immunoblotting of cell extracts with 22C11 and CT15 antibodies. Immunoblotting with PKC isoform specific antibodies of soluble and membrane fractions prepared from 2 h treated cells, showed that nicergoline (50 microM) and PdBu (1 microM) both induced translocation of PKC alpha, gamma and epsilon, but not PKC beta. The involvement of PKC in mediating nicergoline stimulated APPs release was also studied using specific inhibitors. 1 microM calphostin C, a broad range PKC inhibitor, significantly reduced both PdBu (1 microM) and nicergoline (10 microM) induced APPs release. In contrast, Go6976 (1 microM), a selective PKC alpha and beta1 inhibitor, as well as the cAMP-dependent protein kinase inhibitor, H89 (1 microM) were without effect. These results indicate that nicergoline can modulate alpha-secretase APP processing by a PKC dependent mechanism that is likely to involve the gamma and epsilon isoforms of this enzyme.  相似文献   

15.
Protein kinase C (PKC), a family of related but distinct enzymes whose cellular functions are poorly understood, acts in synergy with Ca2+ mobilization for the activation of platelets. Using specific antibodies for the different isoforms, immunoblot analysis revealed the presence in human platelets of three different PKC subtypes which specifically react with alpha, beta and zeta-PKC antibodies. Whereas the subcellular distribution of the alpha PKC remained unaffected, incubation of platelets with 1 microM PMA for 2 min resulted in a significant subcellular distribution from cytosol to membrane of beta-PKC (25%) and zeta (15%). The beta-PKC isoform is more sensitive than alpha and zeta-PKC to PMA, since 100 nM PMA resulted in a translocation of 85%, 64% and 66% respectively of a maximum translocation observed with 1 microM PMA.  相似文献   

16.
Vasoactive eicosanoids have been implicated in the pathogenesis of coronary vasospasms. The signaling mechanisms of eicosanoid-induced coronary vasoconstriction are unclear, and a role for protein kinase C (PKC) has been suggested. Activated PKC undergoes translocation to the surface membrane in the vicinity of Ca2+ channels; however, the effect of Ca2+ entry on the activity of the specific PKC isoforms in coronary smooth muscle is unknown. In the present study, 45Ca2+ influx and isometric contraction were measured in porcine coronary artery strips incubated at increasing extracellular calcium concentrations ([Ca2+]e) and stimulated with prostaglandin F2alpha (PGF2alpha) or the stable thromboxane A2 analog U46619, while in parallel, the cytosolic (C) and particulate (P) fractions were examined for PKC activity and reactivity with anti-PKC antibodies using Western blot analysis. At 0-300 microM [Ca2+]e, both PGF2alpha and U46619 (10(-5) M) significantly increased PKC activity and contraction in the absence of a significant increase in 45Ca2+ influx. At 600 microM [Ca2+]e, PGF2alpha and U46619 increased P/C PKC activity ratio to a peak of 9.52 and 14.58, respectively, with a significant increase in 45Ca2+ influx and contraction. The 45Ca2+ influx--PKC activity--contraction relationship showed a 45Ca2+-influx threshold of approximately 7 micromol x kg(-1) x min(-1) for maximal PKC activation by PGF2alpha and U46619. 45Ca2+ influx > 10 micromol x kg(-1) x min(-1) was associated with further increases in contraction despite a significant decrease in PKC activity. Western blotting analysis revealed alpha-, delta-, epsilon-, and zeta-PKC in porcine coronary artery. In unstimulated tissues, alpha- and epsilon-PKC were mostly distributed in the cytosolic fraction. Significant eicosanoid-induced translocation of epsilon-PKC from the cytosolic to the particulate fraction was observed at 0 [Ca2+]e, while translocation of alpha-PKC was observed at 600 microM [Ca2+]e. Thus, a significant component of eicosanoid-induced coronary contraction is associated with significant PKC activity in the absence of significant increase in Ca2+ entry and may involve activation and translocation of the Ca2+-independent epsilon-PKC. An additional Ca2+-dependent component of eicosanoid-induced coronary contraction is associated with a peak PKC activity at submaximal Ca2+ entry and may involve activation and translocation of the Ca2+-dependent alpha-PKC. The results also suggest that a smaller PKC activity at supramaximal Ca2+ entry may be sufficient during eicosanoid-induced contraction of coronary smooth muscle.  相似文献   

17.
Human promyelocytic leukemia cells (HL-60) were treated with several differentiation inducers, then the changes in the activity of cytosolic protein kinase C (PKC) isoforms were examined by hydroxylapatite chromatography and the species of the isoforms were determined immunologically. In three undifferentiated HL-60 cell lines examined, PKC alpha and beta isoforms were present, but PKC gamma isoform was not detected. When the cells were induced by dimethylsulfoxide, dibutyryl cAMP, or nicotinamide to differentiate into granulocytes, these two PKC isoforms each increased to about 2- to 3-fold. When retinoic acid was used as the inducer, in addition to PKC alpha and beta, a third PKC isoform appeared. This isoform was clearly distinct from rat PKC alpha, beta, and gamma, immunologically. This isoform showed a distinctly lower Ca(2+)-requirement (3 microM) than that of PKC alpha or beta (100 microM) and was more dependent on cardiolipin and phosphatidylethanolamine, compared with PKC alpha, beta, and gamma. These results suggest that while the increases in the activities of PKC alpha and beta isoforms are common in the differentiation program initiated by several inducers, including retinoic acid, the emergence of an unclassified PKC isoform is a retinoic acid-specific process.  相似文献   

18.
Isolated single smooth muscle cells from the fundus of a guinea-pig stomach were permeabilized by use of streptolysin-O (0.5 U/ml). Most of the permeabilized cells responded to 0.6 microM Ca2+, but not to 0.2 microM Ca2+, with a resulting maximal cell shortening to approximately 71% of the resting cell length. These cells were relaxed again by washing with the Ca2+-free solution (2.5 nM free Ca2+) for 3-5 min. Addition of 10 microM acetylcholine (ACh) resulted in both a marked decrease in the concentration of Ca2+ required to trigger a threshold response and an increase in the maximal cell shortening, indicating that the cells retained the muscarinic receptor function. When the cell treated with a protein kinase C (PKC) inhibitor, K-252b (1 microM), for 3 min was exposed to 10 microM ACh in the presence of K-252b, the cell shortened within 2 min with a maximal cell shortening. When the cell shortening was induced by 10 microM ACh plus 1 microM Ca2+ in the presence of K-252b (1 microM) or more selective PKC inhibitors, such as calphostin C (1 microM) or PKC pseudosubstrate peptide (100 microM), the extension of the shortened cells, by washing with the Ca2+-free solution, was significantly inhibited. In contrast, K-252b (1 microM) did not inhibit the relaxation of Ca2+-induced shortened cells. These results suggest that the receptor-mediated activation of PKC in the process of ACh-induced cell shortening plays a role in the subsequent relaxation of the shortened cells.  相似文献   

19.
In this study we examined the effects of insulin on protein kinase C (PKC) activity in cultured fetal chick neurons. PKC activity, measured as 32P incorporation into histone H1 in the presence of calcium (500 microM), phosphatidylserine (100 micrograms/ml), and diolein (3.3 micrograms/ml) minus the incorporation in the presence of calcium alone, was detected in neuronal cytosolic (207 +/- 33 pmol/min/mg) and membrane (33 +/- 8 pmol/min/mg) fractions. Insulin added to intact neurons increased the activity of PKC in both cytosolic and membrane fractions by about 40%. Neurons preincubated with cycloheximide (10 micrograms/ml) 30 min prior to insulin treatment showed the same degree of stimulation of PKC activity by insulin. The activation of PKC was maximal within 5-10 min of insulin exposure and was sustained for at least 60 min. Insulin stimulated PKC in a dose-dependent manner, with a maximal response obtained at 100 ng/ml. Addition of phosphatidylserine and diolein to neuronal cell extracts resulted in the phosphorylation of four major cytosolic proteins (70, 57, 18, and 16 kDa) and one major membrane protein (75 kDa). Phosphorylation of all five proteins was increased 2-fold in extracts from insulin-treated neurons. Immunoblot analysis of whole cell extracts using antibodies against PKC-alpha, PKC-beta, PKC-gamma, PKC-delta, and PKC-epsilon revealed that cultured fetal chick neurons contained only one of these PKC isoforms, the epsilon-isoform. The enzyme was mostly cytosolic. Insulin had no effect on either the amount of distribution of PKC-epsilon in cultured neurons but induced a small change in the mobility of PKC-epsilon on sodium dodecyl sulfate-polyacrylamide gels. When assay conditions were designed to measure specifically the activity of PKC-epsilon, using a synthetic peptide substrate in the absence of calcium, activity was 50 +/- 12% higher in insulin-treated cells (p less than 0.005). PKC activity in control and insulin treated-neurons was almost completely inhibited when assays included a peptide identical to the pseudo-substrate binding site of PKC-epsilon. We conclude that PKC-epsilon is the major PKC isoform present in cultured fetal chick neurons. Insulin stimulates PKC-epsilon activity by a mechanism that does not involve translocation of the enzyme from cytosol to membrane.  相似文献   

20.
The phospholipase C (PLC) isoform most important during agonist-activated IP(3) production in vascular smooth muscle is still unknown. When PLC activity in rat tail artery homogenate was determined, this activity was shown to be inhibited by an antibody directed against PLCbeta2. Antibodies directed against the gamma1, beta1, beta3 and delta1 isoforms of PLC failed to inhibit PLC activity in this tissue. Both PLCbeta2 and PLCgamma1 were isolated from rat tail artery by DEAE column chromatography and PLCbeta2 activity was shown to be 3-fold greater than PLCgamma1 activity. When rat tail artery was treated with norepinephrine (10 mM), PLCbeta2 was shown to translocate from cytosol to membranes. When subcellular fractions of rat tail artery were isolated by sucrose density gradient centrifugation, including nuclei, plasma membrane, and cytosol, PLCbeta2 was detected in the plasma membrane and the cytosol but not in the nuclei. PLCdelta1 and PLCgamma1 were found only in cytosol. This evidence is consistent with the model wherein an agonist such as norepinephrine can activate smooth muscle contraction via interaction with a plasma membrane receptor which can easily interact with a plasma membrane-associated isoform of PLC, such as PLCbeta2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号