共查询到4条相似文献,搜索用时 0 毫秒
1.
Huijuan Guo Natalie Wielsch Jens B. Hafke Aleš Svatoš Axel Mithöfer Wilhelm Boland 《Insect biochemistry and molecular biology》2013,43(9):849-858
Insect herbivory on plants is a complex incident consisting of at least two different aspects, namely mechanical damage and chemical challenge, as feeding insects introduce oral secretions (OS) into the wounded tissue of the attacked plant. Mechanical wounding alone is sufficient to induce a set of defense-related reactions in host plants, but some early events such as membrane potential (Vm) changes and cytosolic Ca2+-elevations can be triggered only by herbivores suggesting that OS-derived molecules are involved in those processes. Following an assay-guided purification based on planar lipid bilayer membrane technique in combination with proteomic analysis, a porin-like protein (PLP) of most likely bacterial origin was determined from collected OS of Spodoptera littoralis larvae. PLP exhibited channel-forming activity. Further, early defense-related events in plant–insect interaction were evaluated by using a purified fraction and α-hemolysin (α-HL) as a commercial pore-forming compound. Both up-regulated the calmodulin-like CML42 in Arabidopsis thaliana, which only responds to oral secretion and not to wounding. An elevation of in vivo [Ca2+]cyt was not observed. Because membrane channel formation is a widespread phenomenon in plant–insect interactions, this PLP might represent an example for microbial compounds from the insect gut which are initially involved in plant–insect interactions. 相似文献
2.
The refractive indices of the bilayer-electrolyte system allow the membrane to operate as a light-guide. This system is then able to monitor, optically, the flow of ions across the bilayer. The light is coupled into and decoupled from a spherically bulged bilayer by means of optical, single mode fibers. The light wave travels along the curved bilayer for several millimeters. This light transmission depends critically on the angle of incidence between the fiber axis and the tangent to the film. Three transmission peaks were observed when the angle of incidence was varied between 0° and 90°. The transmitted light intensity can be modulated by the application of an electric potential upon the bilayer. The center peak, with maximum light transmission, appears at an angle of incidence which is defined by the launching geometry. A quadratic field dependence (independent of the polarity) is observed, which originates from changes in the shape of the torus transition region. The transmission of the satellite peaks, which appear just before and after the central peak, can also be modulated by an external potential. This modulation signal reflects a linear dependence on the polarity of the external voltage. The phase of the modulation signal changes its sign at each satellite peak. It is shown that this modulation signal originates from the bimolecular area of the lipid film. We present evidence that this transmission modulation occurs as a result of ion transport through the lipid film. This provides the basis for the use of wave-guide spectroscopy to investigate membrane ionic fluxes. 相似文献
3.
Philip J. White 《Planta》1994,193(2):186-193
Plasma-membrane vesicles were purified by aqueous-polymer two-phase partitioning of a microsomal membrane fraction from rye (Secale cereale L.) roots and incorporated into planar 1-palmitoyl-2-oleoyl phosphatidylethanolamine bilayers. A voltage-dependent cation-channel became incorporated into the bilayer with its cytoplasmic surface facing the trans compartment (which was grounded) and was characterized from single-channel recordings. The channel had a unitary conductance of 174 pS in symmetrical 100 mM KCl. The selectivity towards monovalent cations, determined from both conductance measurements in symmetrical 100 mM cation chloride and from permeability ratios in the presence of (cis: trans) 100 mM cation chloride: 100 mM KCl, was CsKRb>Na. The channel was also permeable to both Ba2+ and Ca2+. Although the unitary conductances in symmetrical 100 mM BaCl2 and CaCl2 were only 46 pS and 40 pS, respectively, the apparent permeabilities of the divalent cations relative to K+ were greater than expected (PKPBaPCa, 1.001.662.60). This anomaly might result from competition between divalent and monovalent cations for an intrapore binding site. The channel exhibited complex gating kinetics, which were modulated in response to changes in the zero-current (reversal) potential of the channel (Erev). In symmetrical 100 mM KCl the channel inactivated at positive voltages greater than 100 mV and the activated channel exhibited a high probability of being in an open-state (P0>0.90) at all voltages between ±100 mV. Channel P0 approximated unity at voltages in the range -60 to +20 mV. As more-negative voltages were applied, P0 decreased gradually. In contrast, as more positive voltages were applied, P0 decreased initially to a local minimum (approaching P0=0.90), then increased as the voltage was further increased before declining at extreme positive voltages. Under physiologically relevant ionic conditions, with 100 mM KCl plus contaminant Ca2+ on the trans (cytoplasmic) side and 1 mM KCl plus 2 mM CaCl2 on the cis (extracellular) side of the channel, Erev was 25.2 mV and the relative permeability PCa/PK was 7.45. Thus, the channel would be activated by plasma-membrane depolarization in vivo and facilitate Ca2+ influx and net K+ efflux. A role in intracellular signalling is proposed for this channel. It could open in response to stimuli which depolarize the plasma membrane, allowing Ca2+ into the cytoplasm and, thereby, initiating a cellular response. The outward K+ current would act to stabilize the trans-plasma membrane voltage, preventing excessive depolarization during Ca2+ influx.Abbreviations and Symbols EK
Nernst (equilibrium) potential for potassium ions
- Erev
zero-current (reversal) potential of the channel
- c
apparent mean lifetime of the activated-channel closed-state
- o
apparent mean lifetime of the activated-channel open-state
- PE
dephosphatidylethanolamine
- PO
probability of finding the activated channel in an open-state
This work was supported by the Agriculture and Food Research Council and by a grant from the Science and Engineering Research Council Membrane Initiative (GR/F 33971) to Prof. E.A.C. MacRobbie (University of Cambridge). 相似文献
4.
Potassium channels from the plasma membrane of rye roots characterized following incorporation into planar lipid bilayers 总被引:5,自引:0,他引:5
Plasma membrane was purified from roots of rye (Secale cereale L. cv. Rheidol) by aqueous-polymer two-phase partitioning and incorporated into planar bilayers of 1-palmitoyl-2-oleoyl phosphatidylethanolamine by stirring with an osmotic gradient. Since plasmamembrane vesicles were predominantly oriented with their cytoplasmic face internal, when fused to the bilayer the cytoplasmic side of channels faced the trans chamber. In asymmetrical (cis:trans) 280100 mM KCl, five distinct K+-selective channels were detected with mean chord-conductances (between +30 and -30 mV; volyages cis with respect to trans) of 500 pS, 194 pS, 49 pS, 21 pS and 10 pS. The frequencies of incorporation of these K+ channels into the bilayer were 48, 21, 50, 10 and 9%, in the order given (data from 159 bilayers). Only the 49 pS channel was characterized further in this paper, but the remarkable diversity of K+ channels found in this preparation is noteworthy and is the subject of further study. In symmetrical KCl solutions, the 49 pS channel exhibited non-ohmic unitary-current/voltage relationships. The chord-conductance (between +30 and-30 mV) of the channel in symmetrical 100 mM KCl was 39 pS. The unitary current was greater at positive voltages than at corresponding negative voltages and showed considerable rectification with increasing positive and negative voltages. This would represent inward rectification in vivo. Gating of the channel was not voltage-dependent and the channel was open for approx. 80% of the time. Presumably this is not the case in vivo, but we are at present uncertain of the in vivo controls of channel gating. The distribution of channel-open times could be approximated by the sum of two negative exponential functions, yielding two open-state time constants (o, the apparent mean lifetime of the channel-open state) of 1.0 ms and 5.7 s. The distribution of channel-closed times was best approximated by the sum of three negative exponential functions, yielding time constants (c, the apparent mean lifetime of the channel-closed state) of 1.1 ms, 51 ms and 11 s. This indicates at least a five-state kinetic model for the activity of the channel. The selectivity of the 49 pS channel, determined from both reversal potentials under biionic conditions (100 mM KCl100 mM cation chloride) and from conductance measurements in symmetrical 100 mM cation chloride, was Rb+ K+ > Cs+ > Na+ > Li+ > tetraethylammonium (TEA+). The 49 pS channel was reversibly inhibited by quinine (1 mM) but TEA+ (10 mM), Ba2+ (3 mM), Ca2+ (1 mM), 4-aminopyridine (1 mM) and charybdotoxin (3 M) were without effect when applied to the extracellular (cis) surface.Abbreviations and Symbols GHK
Goldman-Hodgkin-Katz
- I/V
current/voltage
- PEG
polyethyleneglycol
- Po
probability o f the channel being open
- TEA+
tetraethylammonium
- c
apparent mean lifetime of the channel-closed state
- o
apparent mean lifetime of the channel-open state
P.J.W. was supported by a grant from the Science and Engineering Research Council Membrane Initiative (GR/F 33971) to Professor E.A.C. MacRobbie and M.T. by the Glaxo Junior Research Fellowship at Churchill College, Cambridge. We thank Dr. D.T. Cooke (AFRC, Long Ashton Research Station, University of Bristol, UK) and Ms. J. Marshall (University of York, UK) for their advice and assistance with the aqueous-polymer two-phase partitioning of plasma membrane from rye roots, Mr. J. Banfield and Miss P. Parmar (University of Cambridge, UK) for technical assistance and Professor E.A.C. MacRobbie, Dr. G. Thiel (University of Cambridge, UK), Dr. M.R. Blatt (Wye College, University of London, UK), Dr. D. Sanders and Dr. E. Johannes (University of York, UK) for helpful discussions. 相似文献