共查询到20条相似文献,搜索用时 0 毫秒
1.
Characterization of the selenium-substituted 2 [4Fe-4Se] ferredoxin from Clostridium pasteurianum 总被引:4,自引:0,他引:4
The sulfur atoms of the two [4Fe-4S] clusters present in the ferredoxin from Clostridium pasteurianum have been replaced by selenium. The substitution is readily carried out by incubating the apoferredoxin with excess amounts of Fe3+, selenite, and dithiothreitol under anaerobic conditions. The UV-visible absorption spectrum of the Se-substituted ferredoxin, the core extrusion of its active sites, and analyses of its iron and selenium contents show that it contains two [4Fe-4Se] clusters. The Se-substituted ferredoxin is considerably less resistant to oxygen or to acidic and alkaline pH than the native ferredoxin: the half-lives of the former are 20-500 times shorter than those of the latter. The native ferredoxin and the Se-substituted ferredoxin display similar kinetic properties when used as electron donors to the hydrogenase from C. pasteurianum. It is of note, however, that the Km and Vmax values are lower for the 2[4Fe-4Se] ferredoxin than for the 2[4Fe-4S] ferredoxin. Reductive and oxidative titrations with dithionite and with thionine, respectively, show that both ferredoxins are two-electron carriers. The redox potentials of the ferredoxins have been measured by equilibrating them with the H2/H+ couple via hydrogenase: values of -423 and -417 mV have been found for the 2[4Fe-4S] ferredoxin and 2[4Fe-4Se] ferredoxin, respectively. Ferredoxins containing both chalcogenides in their [4Fe-4X] (X = S, Se) clusters have been prepared by reconstitution reactions involving mixtures of sulfide and selenide: the latter experiments show that sulfide and selenide are equally reactive in the incorporation of [4Fe-4X] (X = S, Se) sites into ferredoxin. The present report, together with former studies, establishes the general feasibility of the Se/S substitution in [2Fe-2S] and in [4Fe-4S] clusters of proteins and of synthetic analogues. 相似文献
2.
The [2Fe-2S] ferredoxin from Clostridium pasteurianum had previously been shown to interact specifically with the nitrogenase MoFe protein, and electrostatic forces were found to be important contributors to the interaction. This phenomenon has now been analyzed in detail by using ferredoxin variants in which charge inversions or cancellations were introduced on all charged residues. The mutated forms of the ferredoxin were covalently cross-linked to the MoFe protein. The reaction products were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and their nitrogenase activity was measured. The latter displayed a consistent inverse correlation with the amount of cross-linked MoFe protein. The data allowed an unambiguous identification of the ferredoxin residues (glutamates 31, 34, 38, 39, 84, 85) that are involved in the interaction with the MoFe protein. Furthermore, whereas the wild-type ferredoxin yielded approximately equal amounts of cross-linked products with the alpha and beta subunits of the MoFe protein, some of its molecular variants displayed a differential decrease of reactivity towards one or the other of these subunits. The positions on the ferredoxin molecule of the residues interacting with the MoFe protein were determined using the recently elucidated crystal structure of the homologous [2Fe-2S] ferredoxin from Aquifex aeolicus. 相似文献
3.
The [2Fe-2S] protein from Azotobacter vinelandii that was previously known as iron-sulfur protein I, or Shethna protein I, has been shown to be encoded by a gene belonging
to the major nif gene cluster. Overexpression of this gene in Escherichia coli yielded a dimeric protein of which each subunit comprises 106 residues and contains one [2Fe-2S] cluster. The sequence of
this protein is very similar to that of the [2Fe-2S] ferredoxin from Clostridium pasteurianum (2FeCpFd), and the four cysteine ligands of the [2Fe-2S] cluster occur in the same positions. The A. vinelandii protein differs from the C. pasteurianum one by the absence of the N-terminal methionine, the presence of a five-residue C-terminal extension, and a lesser number
of acidic and polar residues. The UV-visible absorption and EPR spectra, as well as the redox potentials of the two proteins,
are nearly identical. These data show that the A. vinelandii FeS protein I, which is therefore proposed to be designated 2FeAvFdI, is the counterpart of the [2Fe-2S] ferredoxin from C. pasteurianum. The occurrence of the 2FeAvFdI-encoding gene in the nif gene cluster, together with the previous demonstration of a specific interaction between the 2FeCpFd and the nitrogenase MoFe protein, suggest that both proteins might be involved in nitrogen fixation, with possibly similar
roles.
Received: 21 December 1998 / Accepted: 1 March 1999 相似文献
4.
Amino acid sequence of the [4Fe-4S] ferredoxin isolated from Desulfovibrio desulfuricans Norway 总被引:1,自引:0,他引:1
M H Bruschi F A Guerlesquin G E Bovier-Lapierre J J Bonicel P M Couchoud 《The Journal of biological chemistry》1985,260(14):8292-8296
The complete amino acid sequence of the [4Fe-4S] ferredoxin from Desulfovibrio desulfuricans Norway was determined by repetitive Edman degradation of the whole protein and peptides derived from tryptic digestion. The protein has 59 residues. Four of the six cysteine residues are involved in the binding of the [4Fe-4S] cluster in the same arrangement as in clostridial ferredoxins. This sequence is compared to various Desulfovibrio ferredoxin sequences and to the sequence and three-dimensional structure of Peptococcus aerogenes ferredoxin. Evidence of gene duplication is indicated. The requirement of some sequence features in the ferredoxin for an interaction process with its electron transfer partner, cytochrome c3, is postulated in the discussion. 相似文献
5.
The amino acid sequence of Clostridium pasteurianum ferredoxin 总被引:12,自引:0,他引:12
6.
7.
The ferredoxin from Clostridium pasteurianum, which contains two [4Fe-4S] clusters, was investigated in its oxidized and reduced states by two-dimensional (2D) (1)H-(1)H nuclear Overhauser enhancement spectroscopy (NOESY). Comparison of the data from the oxidized ferredoxin with those published previously revealed the same NOE connectivities. No previous (1)H-(1)H NOESY study of the fully reduced ferredoxin has previously been published. However, it was possible to compare our results with those of a 2D exchange spectroscopy investigation of half-reduced C. pasteurianum ferredoxin. The present results with reduced C. pasteurianum ferredoxin confirm many of the (1)H peaks and NOE interactions reported earlier, revise others, and locate resonances previously undetected. When the ferredoxin was slightly exposed to oxygen, several of the hyperfine shifted resonances were irreversibly influenced. A resonance at 34 ppm in the (1)H NMR spectra of both redox states is indicative of oxygen exposure. These results indicate the importance of keeping the ferredoxin strictly anaerobic during purification and solvent exchange. 相似文献
8.
Ex novo enzymic synthesis of the two 4Fe-4S clusters of Clostridium pasteurianum ferredoxin has been achieved by incubation of the apoprotein with catalytic amounts of the sulfurtransferase rhodanese in the presence of thiosulfate, DL-dihydrolipoate and ferric ammonium citrate. This enzymic reconstitution procedure was compared to a chemical one, in which the enzyme was replaced by sodium sulfide. A further comparison was made with the results previously obtained in the enzymic synthesis of the 2Fe-2S cluster of spinach ferredoxin, allowing the following conclusions to be drawn. The nature of the cluster to be inserted into the reconstituted iron-sulfur protein is determined by the apoprotein itself. The refolding of the structure of the iron-sulfur proteins around the newly inserted cluster is the rate-limiting step in both chemical and enzymic reconstitution. Rhodanese appears to play a role in the recovery of the native architecture of the reconstituted iron-sulfur protein(s). The extension to the 4Fe-4S centers of the rhodanese-based biosynthetic system allows this enzymic route to be proposed as a general way to the in vivo synthesis of iron-sulfur structures. 相似文献
9.
A gene encoding the exact sequence of Clostridium pasteurianum 2[4Fe-4S] ferredoxin and containing 11 unique restriction endonuclease cleavage sites has been synthesized and cloned in Escherichia coli. The synthetic gene is efficiently expressed in E. coli and its product has been purified and characterized. The N-terminal sequence is identical to that of the protein isolated from C. pasteurianum and the recombinant ferredoxin contains the exact amount of [4Fe-4S] clusters (2 per monomer) expected for homogeneous holoferredoxin. It displays reduction potential and kinetic parameters as electron donor to C. pasteurianum hydrogenase I identical to those determined for the native ferredoxin. All of these properties demonstrate that the 2[4Fe-4S] ferredoxin expressed in E. coli is identical to the parent clostridial protein. 相似文献
10.
The ferredoxin of the extreme haloarchaeon Halobacterium salinarum requires high (>2 M) concentration of salt for its stability. We have used a variety of spectroscopic probes for identifying the structural elements which necessitate the presence of high salt for its stability. Titration of either the fluorescence intensity of the tryptophan residues or the circular dichroism (CD) at 217 nm with salt has identified a structural form at low (<0.1 M) concentration of salt. This structural form (L) exhibits increased solvent exposure of W side chain(s) and decreased level of secondary structure compared to the native (N) protein at high concentrations of salt. The L-form, however, contains significantly higher levels of both secondary and tertiary structures compared to the form (U) found in highly denaturing conditions such as 8 M urea. The structural integrity of the L-form was highly pH dependent while that of N- or U-form was not. The pH dependence of either fluorescence intensity or CD of the L-form showed the presence of two apparent pK values: approximately 5 and approximately 10. The structural integrity of the L-form at low (<5) pH was very similar to that of the N-form. However, titration with denaturants showed that the low pH L-form is significantly less stable than the N-form. The increased destabilization of the L-form with the increase in pH was interpreted to be due to mutual Coulombic repulsion of carboxylate side chains (pK approximately 6) and due to the disruption of salt bridge(s) between ionized carboxylates and protonated amino groups (pK approximately 10). Estimation of solvent accessibility of W residues by fluorescence quenching, and measurement of decay kinetics of fluorescence intensity and anisotropy strongly support the above model. Polylysine interacted stoichiometrically with the L-form of ferredoxin resulting in nativelike structure. In conclusion, our studies show that high concentration of salt stabilizes the haloarchaeal ferredoxin in two ways: (i) neutralization of Coulombic repulsion among carboxyl groups of the acidic residues, and (ii) salting out of hydrophobic residues leading to their burial and stronger interaction. 相似文献
11.
12.
Yeh AP Chatelet C Soltis SM Kuhn P Meyer J Rees DC 《Journal of molecular biology》2000,300(3):587-595
The 2.3 A resolution crystal structure of a [2Fe-2S] cluster containing ferredoxin from Aquifex aeolicus reveals a thioredoxin-like fold that is novel among iron-sulfur proteins. The [2Fe-2S] cluster is located near the surface of the protein, at a site corresponding to that of the active-site disulfide bridge in thioredoxin. The four cysteine ligands are located near the ends of two surface loops. Two of these ligands can be substituted by non-native cysteine residues introduced throughout a stretch of the polypeptide chain that forms a protruding loop extending away from the cluster. The presence of homologs of this ferredoxin as components of more complex anaerobic and aerobic electron transfer systems indicates that this is a versatile fold for biological redox processes. 相似文献
13.
The [2Fe-2S] ferredoxin ("Red paramagnetic protein", RPP) from C. pasteurianum has been found to be composed of two identical subunits of 10,000 +/- 2 000 daltons, each containing a [2Fe-2S] cluster. Resonance Raman (RR) spectra of RPP have been obtained at 23 degrees K, and compared to those of spinach ferredoxin (Sp Fd). Ten modes of the [2Fe-2S] chromophore were observed in the 100-450 cm-1 range. Assignments of non fundamental modes in the 500-900 cm-1 range allowed correlations between fundamental stretching modes of RPP and Sp Fd. Although assuming a [2Fe-2S] structure, the chromophore of RPP differs from that of Sp Fd by its conformation and by a slight weakening of Fe-S bonds, involving both the inorganic core and the cysteine ligands. 相似文献
14.
The effect of reducing one 4Fe-4S cluster in Clostridium pasteurianum 2 (4Fe-4S) ferredoxin on the reduction potential of the unreduced cluster has been investigated. While such an effect is suggested by both the x-ray structure of Peptococcus aerogenes 2 (4F-4S) ferredoxin and the polypeptide conformational change on reduction present in clostridial-type 2 (4Fe-4S) ferredoxins, present studies indicate that cluster-cluster cooperative interaction is not strong enough to be of functional importance in these proteins. 相似文献
15.
I Bertini F Briganti C Luchinat L Messori R Monnanni A Scozzafava G Vallini 《European journal of biochemistry》1992,204(2):831-839
The ferredoxin from Clostridium pasteurianum, containing two Fe4S4 clusters, has been investigated through 1H-NMR spectroscopy in the reduced and partially oxidized states. The 1H-NMR spectrum of fully reduced ferredoxin, obtained by addition of stoichiometric amounts of dithionite, has been characterized. One- and two-dimensional NMR saturation transfer experiments on partially reduced samples have allowed the isotropically shifted signals of the reduced form to be correlated to those of the oxidized form, for which the complete assignment of the beta-CH2 cysteinyl residues is available. In addition, observation of the 1H-NMR signals of the intermediate species with characteristic chemical shift values for each cluster allowed us to assign all the Cys beta-CH2 signals to cluster I or cluster II and to calculate the difference in redox potential between them. Starting from these results, reanalysis of the 1H-NMR features of the two clusters in the oxidized form showed that they are strikingly similar, supporting the idea of a high degree of internal symmetry between them, in agreement with crystallographic results on an homologous ferredoxin. On the other hand, the 1H-NMR properties of the two clusters in the reduced form deviate considerably from each other, suggesting that reduction of the clusters brings about different structural changes and loss of internal symmetry. A theoretical approach is reported to account for the isotropic shifts and the temperature dependence of the NMR signals of the reduced protein. 相似文献
16.
Aquifex aeolicus is the only hyperthermophile that is known to contain a plant- and mammalian-type [2Fe-2S] ferredoxin (Aae Fd1). This unique protein contains two cysteines, in addition to the four that act as ligands of the [2Fe-2S] cluster, which form a disulfide bridge. We have investigated the stability of Aae Fd1 with (wild-type) and without (C87A variant) the disulfide bond, with respect to pH, thermal and chemical perturbation, and compared the results to those for the mesophilic [2Fe-2S] ferredoxin from spinach. Unfolding reactions of all three proteins are irreversible due to cluster decomposition in the unfolded state. Wild-type and C87A Aae Fd1 proteins are extremely stable: unfolding at 20 degrees C requires high concentrations of the chemical denaturant and long incubation times. Moreover, their thermal-unfolding midpoints are 40-50 degrees higher than that for spinach ferredoxin (pH 7). The stability of the Aae Fd1 protein is significantly lower at pH 2.5 than pH 7 and 10, suggesting that ionic interactions play a role in structural integrity. Interestingly, the iron-sulfur cluster in C87A Aae Fd1 rearranges into a transient species with absorption bands at 520 and 610 nm, presumably a linear three-iron cluster, in the high-pH unfolded state. 相似文献
17.
Knowing the manner of protein-protein interactions is vital for understanding biological events. The plant-type [2Fe-2S] ferredoxin (Fd), a well-known small iron-sulfur protein with low redox potential, partitions electrons to a variety of Fd-dependent enzymes via specific protein-protein interactions. Here we have refined the crystal structure of a recombinant plant-type Fd I from the blue green alga Aphanothece sacrum (AsFd-I) at 1.46 Å resolution on the basis of the synchrotron radiation data. Incorporating the revised amino-acid sequence, our analysis corrects the 3D structure previously reported; we identified the short α-helix (67-71) near the active center, which is conserved in other plant-type [2Fe-2S] Fds. Although the 3D structures of the four molecules in the asymmetric unit are similar to each other, detailed comparison of the four structures revealed the segments whose conformations are variable. Structural comparison between the Fds from different sources showed that the distribution of the variable segments in AsFd-I is highly conserved in other Fds, suggesting the presence of intrinsically flexible regions in the plant-type [2Fe-2S] Fd. A few structures of the complexes with Fd-dependent enzymes clearly demonstrate that the protein-protein interactions are achieved through these variable regions in Fd. The results described here will provide a guide for interpreting the biochemical and mutational studies that aim at the manner of interactions with Fd-dependent enzymes. 相似文献
18.
Senda M Kishigami S Kimura S Fukuda M Ishida T Senda T 《Journal of molecular biology》2007,373(2):382-400
The electron transfer system of the biphenyl dioxygenase BphA, which is derived from Acidovorax sp. (formally Pseudomonas sp.) strain KKS102, is composed of an FAD-containing NADH-ferredoxin reductase (BphA4) and a Rieske-type [2Fe-2S] ferredoxin (BphA3). Biochemical studies have suggested that the whole electron transfer process from NADH to BphA3 comprises three consecutive elementary electron-transfer reactions, in which BphA3 and BphA4 interact transiently in a redox-dependent manner. Initially, BphA4 receives two electrons from NADH. The reduced BphA4 then delivers one electron each to the [2Fe-2S] cluster of the two BphA3 molecules through redox-dependent transient interactions. The reduced BphA3 transports the electron to BphA1A2, a terminal oxygenase, to support the activation of dioxygen for biphenyl dihydroxylation. In order to elucidate the molecular mechanisms of the sequential reaction and the redox-dependent interaction between BphA3 and BphA4, we determined the crystal structures of the productive BphA3-BphA4 complex, and of free BphA3 and BphA4 in all the redox states occurring in the catalytic cycle. The crystal structures of these reaction intermediates demonstrated that each elementary electron transfer induces a series of redox-dependent conformational changes in BphA3 and BphA4, which regulate the interaction between them. In addition, the conformational changes induced by the preceding electron transfer seem to induce the next electron transfer. The interplay of electron transfer and induced conformational changes seems to be critical to the sequential electron-transfer reaction from NADH to BphA3. 相似文献
19.
20.
Sevrioukova IF 《Journal of molecular biology》2005,347(3):607-621
Putidaredoxin (Pdx), a vertebrate-type [2Fe-2S] ferredoxin from Pseudomonas putida, transfers electrons from NADH-putidaredoxin reductase to cytochrome P450cam. Pdx exhibits redox-dependent binding affinities for P450cam and is thought to play an effector role in the monooxygenase reaction catalyzed by this hemoprotein. To understand how the reduced form of Pdx is stabilized and how reduction of the [2Fe-2S] cluster affects molecular properties of the iron-sulfur protein, crystal structures of reduced C73S and C73S/C85S Pdx were solved to 1.45 angstroms and 1.84 angstroms resolution, respectively, and compared to the corresponding 2.0 angstroms and 2.03 angstroms X-ray models of the oxidized mutants. To prevent photoreduction, the latter models were determined using in-house radiation source and the X-ray dose received by Pdx crystals was significantly decreased. Structural analysis showed that in reduced Pdx the Cys45-Ala46 peptide bond flip initiates readjustment of hydrogen bonding interactions between the [2Fe-2S] cluster, the Sgamma atoms of the cysteinyl ligands, and the backbone amide nitrogen atoms that results in tightening of the Cys39-Cys48 metal cluster binding loop around the prosthetic group and shifting of the metal center toward the Cys45-Thr47 peptide. From the metal center binding loop, the redox changes are transmitted to the linked Ile32-Asp38 peptide triggering structural rearrangement between the Tyr33-Asp34, Ser7-Asp9 and Pro102-Asp103 fragments of Pdx. The newly established hydrogen bonding interactions between Ser7, Asp9, Tyr33, Asp34, and Pro102, in turn, not only stabilize the tightened conformation of the [2Fe-2S] cluster binding loop but also assist in formation of a specific structural patch on the surface of Pdx that can be recognized by P450cam. This redox-linked change in surface properties is likely to be responsible for different binding affinity of oxidized and reduced Pdx to the hemoprotein. 相似文献