首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Fibroblast growth factors (FGF) are pluripotent growth factors that play pivotal roles in the development of various organs. During mandibular organogenesis, Meckel's cartilage, teeth, and mandibular bone differentiate under the control of various FGF. In the present study, we evaluated the role of FGF10 in rat mandibular chondrogenesis and morphogenesis using mandibular organ culture and mandibular cell micromass culture systems. The overexpression of Fgf10 induced by the electroporation of an FGF10 expression vector not only altered the size and shape of Meckel's cartilage, but also upregulated the expression of the cartilage characteristic genes Col2a1 and Sox9 in a mandibular organ culture system. Meckel's cartilage was deformed, and its size was increased when Fgf10 was overexpressed in the lateral area of the mandible. Meanwhile, no effect was found when Fgf10 was overexpressed in the medial portion. In the mandibular cell micromass culture, recombinant FGF10 treatment enhanced chondrogenic differentiation and endogenous ERK (extracellular signal-regulated kinase) phosphorylation in cells derived from the lateral area of the mandible. On the other hand, FGF10 did not have significant effects on mandibular cell proliferation. These results indicate that FGF10 regulates Meckel's cartilage formation during early mandibular morphogenesis by controlling the cell differentiation in the lateral area of the mandibular process in rats.  相似文献   

2.
This study describes the persistence of an embryonal structure through to sub-adulthood in the ostrich and emu. Mandibles from sub-adult ostrich and emu were subjected to special staining, light microscopy and dissected to reveal and describe Meckel's cartilage. Meckel's cartilage, composed of hyaline cartilage, was present within the neurovascular canal of both species. The persistence through to sub-adulthood of Meckel's cartilage in the ostrich and emu is a feature not previously reported in any other avian species. The proximal end of Meckel's cartilage was ossified in the region of the articular bone and the distal end was ossified in some specimens. Although this structure may ossify at a much later stage in life, the function in young and sub-adult birds may be to dampen shockwaves along the intramandibular nerve that result from the action of pecking. In the ostrich, the M. pseudotemporalis superficialis tendon inserted onto the supra-angular bone and Meckel's cartilage. In the emu, a small portion of the tendon was attached to the supra-angular bone and the main part to Meckel's cartilage. The persistence of Meckel's cartilage in adult lepidosaurs, crocodilians and ratites represents an unusual shared trait between the extant members of the above groups.  相似文献   

3.
A disintegrin and metalloproteinase with thrombospondin motif (adamalysin–thrombospondins, ADAMTS) degrades aggrecan, one of the major extracellular matrix (ECM) components in cartilage. Mandibular condylar cartilage differs from primary cartilage, such as articular and growth plate cartilage, in its metabolism of ECM, proliferation, and differentiation. Mandibular condylar cartilage acts as both articular and growth plate cartilage in the growing period, while it remains as articular cartilage after growth. We hypothesized that functional and ECM differences between condylar and primary cartilages give rise to differences in gene expression patterns and levels of aggrecan and ADAMTS-1, -4, and -5 during growth and aging. We employed in situ hybridization and semiquantitative RT-PCR to identify mRNA expression for these molecules in condylar cartilage and primary cartilages during growth and aging. All of the ADAMTSs presented characteristic, age-dependent expression patterns and levels among the cartilages tested in this study. ADAMTS-5 mainly contributed to ECM metabolism in growth plate and condylar cartilage during growth. ADAMTS-1 and ADAMTS-4 may be involved in ECM turn over in articular cartilage. The results of the present study reveal that ECM metabolism and expression of related proteolytic enzymes in primary and secondary cartilages may be differentially regulated during growth and aging.  相似文献   

4.
Signalling of the epithelial splicing variant of the fibroblast growth factor receptor 2 (FGFR2b) induces both autophagy and phagocytosis in human keratinocytes. Here, we investigated, in the cell model of HaCaT keratinocytes, whether the two processes might be related and the possible involvement of PLCγ signalling. Using fluorescence and electron microscopy, we demonstrated that the FGFR2b‐induced phagocytosis and autophagy involve converging autophagosomal and phagosomal compartments. Moreover, the forced expression of FGFR2b signalling mutants and the use of specific inhibitors of FGFR2b substrates showed that the receptor‐triggered autophagy requires PLCγ signalling, which in turn activates JNK1 via PKCδ. Finally, we found that in primary human keratinocytes derived from light or dark pigmented skin and expressing different levels of FGFR2b, the rate of phagocytosis and autophagy and the convergence of the two intracellular pathways are dependent on the level of receptor expression, suggesting that FGFR2b signalling would control in vivo the number of melanosomes in keratinocytes, determining skin pigmentation.  相似文献   

5.
After high fractures of the mandibular condyle, the insufficient blood supply to the condyle often leads to poor bone and cartilage repair ability and poor clinical outcome. Parathyroid hormone (PTH) can promote the bone formation and mineralization of mandibular fracture, but its effects on cartilage healing after the free reduction and internal fixation of high fractures of the mandibular condyle are unknown. In this study, a rabbit model of free reduction and internal fixation of high fractures of the mandibular condyle was established, and the effects and mechanisms of PTH on condylar cartilage healing were explored. Forty-eight specific-pathogen-free (SPF) grade rabbits were randomly divided into two groups. In the experimental group, PTH was injected subcutaneously at 20 µg/kg (PTH (1–34)) every other day, and in the control group, PTH was replaced with 1 ml saline. The healing cartilages were assessed at postoperative days 7, 14, 21, and 28. Observation of gross specimens, hematoxylin eosin staining and Safranin O/fast green staining found that every-other-day subcutaneous injection of PTH at 20 µg/kg promoted healing of condylar cartilage and subchondral osteogenesis in the fracture site. Immunohistochemistry and polymerase chain reaction showed that PTH significantly upregulated the chondrogenic genes Sox9 and Col2a1 in the cartilage fracture site within 7–21 postoperative days in the experimental group than those in the control group, while it downregulated the cartilage inflammation gene matrix metalloproteinase-13 and chondrocyte terminal differentiation gene ColX. In summary, exogenous PTH can stimulate the formation of cartilage matrix by triggering Sox9 expression at the early stage of cartilage healing, and it provides a potential therapeutic protocol for high fractures of the mandibular condyle.  相似文献   

6.
The main purpose of this in situ hybridization study was to investigate MMPs and TIMPs mRNA expression in developing mandibular condylar cartilage and limb bud cartilage. At E14.0, MMP-2, -14, TIMP-1 and -2 mRNAs were expressed in the periosteum of mandibular bone, and in the condylar anlage. At E15.0 MMP-2, -14, TIMP-1 and -2 mRNAs were expressed in the perichondrium of newly formed condylar cartilage and the periosteum of developing bone collar, whereas, expression of MMP-14 and TIMP-1 mRNAs were restricted to the inner layer of the periosteum/perichondrium. This expression patterns continued until E18.0. Further, from E13.0 to 14.0, in the developing tibial cartilage, MMP-2, -14, and TIMP-2 mRNAs were expressed in the periosteum/perichondrium, but weak MMP-14 and no TIMP-1 mRNA expression was recognized in the perichondrium. These results confirmed that the perichondrium of condylar cartilage has characteristics of periosteum, and suggested that MMPs and/or TIMPs are more actively involved in the development of condylar (secondary) cartilage than tibial (primary) cartilage. MMP-9-positive cells were observed in the bone collar of both types of cartilage, and they were consistent with osteoclasts/chondroclasts. MMP-13 mRNA expression was restricted to the chondrocytes of the lower hypertrophic cell zone in tibial cartilage at E14.0, indicating MMP-13 can be used as a marker for lower hypertrophic cell zone. It was also expressed in chondrocytes of newly formed condylar cartilage at E15.0, and continuously expressed in the lower hypertrophic cell zone until E18.0. These results confirmed that progenitor cells of condylar cartilage are rapidly differentiated into hypertrophic chondrocytes, which is a unique structural feature of secondary cartilage different from that of primary cartilage.  相似文献   

7.
Dipeptidyl peptidase-like protein 6 (DPP6), a member of the dipeptidyl aminopeptidase family, plays distinct roles in brain development, but its expression in embryonic Meckel's cartilage and tooth germs development is unknown. We analyzed the expression pattern of DPP6 in Meckel's cartilage and tooth germs development using in situ hybridization. DPP6 was detected in different patterns in Meckel's cartilage and tooth germs during mouse facial development from 11.5 to 13.5 days post-coitus (dpc) embryos. The expression pattern of DPP6 suggests that it may be involved in mandible and tooth development.  相似文献   

8.
There is a growing body of evidence supporting the involvement of the Wnt signaling pathway in various aspects of skeletal and joint development; however, it is unclear whether it is involved in the process of temporomandibular joint development. In order to clarify this issue, we examined the spatio-temporal distribution of mRNAs and proteins of the Wnt family during the formation of the mandibular condylar cartilage at the prenatal and postnatal stages. An in situ hybridization test revealed no mRNAs of β-catenin and Axin2 during early mesenchymal condensation; the ligands surveyed in this study (including Wnt-4, 5a, and 9a) were clearly detected at various ranges of expression, mainly in the condylar blastema and later distinct cartilaginous layers. Apart from β-catenin and Axin2, the Wnt family members surveyed in this study, including Lef-1, were found to be immunopositive during early chondrogenesis in the condylar cartilage at E14.5. After distinct chondrocyte layers were identified within the cartilage at E16.5, the expression of the Wnt signaling members was different and mainly restricted to proliferating cells and mineralized hypertrophic chondrocytes. In the adult mandibular condylar cartilage, the Wnt-4 mRNA, as well as the Wnt-4 and Wnt-9a proteins, was not observed. Our findings demonstrated that the Wnt signaling pathway was associated with the development of mandibular condylar cartilage.  相似文献   

9.
Glioma is a brain tumour that is often diagnosed, and temozolomide (TMZ) is a common chemotherapeutic drug used in glioma. Yet, resistance to TMZ is a chief hurdle towards curing the malignancy. The current work explores the pathways and involvement of miR‐3116 in the TMZ resistance. miR‐3116 and FGFR1 mRNA were quantified by real‐time PCR in malignant samples and cell lines. Appropriate assays were designed for apoptosis, viability, the ability to form colonies and reporter assays to study the effects of the miR‐3116 or FGFR1. The involvement of PI3K/AKT signalling was assessed using Western blotting. Tumorigenesis was evaluated in an appropriate xenograft mouse model in vivo. This work revealed that the levels of miR‐3116 dipped in samples resistant to TMZ, while increased miR‐3116 caused an inhibition of the tumour features mentioned above to hence augment TMZ sensitivity. miR‐3116 was found to target FGFR1. When FGFR1 was overexpressed, resistance to TMZ was augmented and reversed the sensitivity caused by miR‐3116. Our findings further confirmed PI3K/AKT signalling pathway is involved in this action. In conclusion, miR‐3116 sensitizes glioma cells to TMZ through FGFR1 downregulation and the PI3K/AKT pathway inactivation. Our results provide a strategy to overcome TMZ resistance in glioma treatment.  相似文献   

10.
Mice with the K644E kinase domain mutation in fibroblast growth factor receptor 3 (Fgfr3) (EIIa;Fgfr3(+/K644E)) exhibited a marked enlargement of the brain. The brain size was increased as early as E11.5, not secondary to the possible effect of Fgfr3 activity in the skeleton. Furthermore, the mutant brains showed a dramatic increase in cortical thickness, a phenotype opposite to that in FGF2 knockout mice. Despite this increased thickness, cortical layer formation was largely unaffected and no cortical folding was observed during embryonic days 11.5-18.5 (E11.5-E18.5). Measurement of cortical thickness revealed an increase of 38.1% in the EIIa;Fgfr3(+/K644E) mice at E14.5 and the advanced appearance of the cortical plate was frequently observed at this stage. Unbiased stereological analysis revealed that the volume of the ventricular zone (VZ) was increased by more than two fold in the EIIa;Fgfr3(+/K644E) mutants at E14.5. A relatively mild increase in progenitor cell proliferation and a profound decrease in developmental apoptosis during E11.5-E14.5 most likely accounts for the dramatic increase in total telecephalic cell number. Taken together, our data suggest a novel function of Fgfr3 in controlling the development of the cortex, by regulating proliferation and apoptosis of cortical progenitors.  相似文献   

11.
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play significant roles in vertebrate organogenesis and morphogenesis. FGFR3 is a negative regulator of chondrogenesis and multiple mutations with constitutive activity of FGFR3 result in achondroplasia, one of the most common dwarfisms in humans, but the molecular mechanism remains elusive. In this study, we found that chondrocyte-specific deletion of BMP type I receptor a (Bmpr1a) rescued the bone overgrowth phenotype observed in Fgfr3 deficient mice by reducing chondrocyte differentiation. Consistently, using in vitro chondrogenic differentiation assay system, we demonstrated that FGFR3 inhibited BMPR1a-mediated chondrogenic differentiation. Furthermore, we showed that FGFR3 hyper-activation resulted in impaired BMP signaling in chondrocytes of mouse growth plates. We also found that FGFR3 inhibited BMP-2- or constitutively activated BMPR1-induced phosphorylation of Smads through a mechanism independent of its tyrosine kinase activity. We found that FGFR3 facilitates BMPR1a to degradation through Smurf1-mediated ubiquitination pathway. We demonstrated that down-regulation of BMP signaling by BMPR1 inhibitor dorsomorphin led to the retardation of chondrogenic differentiation, which mimics the effect of FGF-2 on chondrocytes and BMP-2 treatment partially rescued the retarded growth of cultured bone rudiments from thanatophoric dysplasia type II mice. Our findings reveal that FGFR3 promotes the degradation of BMPR1a, which plays an important role in the pathogenesis of FGFR3-related skeletal dysplasia.  相似文献   

12.
BACKGROUND: Pfeiffer syndrome (PS; OMIM #101600) is an autosomal dominant disorder characterized by craniosynostosis, midface hypoplasia, broad thumbs, brachydactyly, broad great toes, and variable syndactyly. CASE: We report a case of PS (type 3) with tracheal and visceral involvement and sacrococcygeal eversion. The patient shows facial dysmorphism with macrocephaly, dolichocephaly, and trigonocephaly, and an asymmetric skull, bilateral and severe exophthalmia with shallow orbits and ocular hypertelorism, downslanting palpebral fissures, constant strabismus, short anterior cranial base, and midface hypoplasia. CONCLUSIONS: Molecular analysis of the FGFR2 gene in this patient revealed a point mutation (c.890G>C NM_000141). This mutation leads to the substitution of the residue tryptophan at position 290 to cysteine in the protein (p.Try290Cys). These data reinforce the hypothesis that the p.Trp290Cys mutation is more often associated with a severe and poor prognosis of PS. Furthermore they suggest that the presence of sacrococcygeal defects is not associated with any specific FGFR2 mutation.  相似文献   

13.
Members of the transforming growth factor beta (TGFβ) superfamily of secreted factors play essential roles in nearly every aspect of cartilage formation and maintenance. However, the mechanisms by which TGFβs transduce their effects in cartilage in vivo remain poorly understood. Mutations in several TGFβ family members, their receptors, extracellular modulators, and intracellular transducers have been described, and these usually impact the development of the cartilaginous skeleton. Furthermore, genome‐wide association studies have linked components of the (TGFβ) superfamily to susceptibility to osteoarthritis. This review focuses on recent discoveries from genetic studies in the mouse regarding the regulation of TGFβ signaling in developing growth plate and articular cartilage, as well as the different modes of crosstalk between canonical and noncanonical TGFβ signaling. These new insights into TGFβ signaling in cartilage may open new prospects for therapies that maintain healthy articular cartilage. Birth Defects Research (Part C) 102:37–51, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
15.
Receptor Tyrosine Kinases (RTKs) conduct biochemical signals via lateral dimerization in the plasma membrane, and defects in their dimerization lead to unregulated signaling and disease. RTK transmembrane (TM) domains are proposed to play an important role in the process, underscored by the finding that single amino acids mutations in the TM domains can induce pathological phenotypes. Therefore, many important questions pertaining to the mode of signal transduction and the mechanism of pathology induction could be answered by studying the chemical-physical basis behind RTK TM domain dimerization and the interactions of RTK TM domains with lipids in model bilayer systems. As a first step towards this goal, here we report the synthesis of the TM domain of fibroblast growth factor receptor 3 (FGFR3), an RTK that is crucial for skeletal development. We have used solid phase peptide synthesis to produce two peptides: one corresponding to the membrane embedded segment and the naturally occurring flanking residues at the N- and C-termini (TMwt), and a second one in which the flanking residues have been substituted with diLysines at the termini (TMKK). We have demonstrated that the hydrophobic FGFR3 TM domain can be synthesized for biophysical studies with high yield. The protocol presented in the paper can be applied to the synthesis of other RTK TM domains. As expected, the Lys flanks decrease the hydrophobicity of the TM domain, such that TMKK elutes much earlier than TMwt during reverse phase HPLC purification. The Lysines have no effect on peptide solubility in SDS and on peptide secondary structure, but they abolish peptide dimerization on SDS gels. These results suggest that caution should be exercised when modifying RTK TM domains to render them more manageable for biophysical studies.  相似文献   

16.
FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer.  相似文献   

17.
During craniofacial development, Meckel's cartilage and the mandible bone derive from the first branchial arch, and their development depends upon the contribution of cranial neural crest (CNC) cells. We previously demonstrated that conditional inactivation of Tgfbr2 in the neural crest of mice (Tgfbr2fl/fl;Wnt1-Cre) results in severe defects in mandibular development, although the specific cellular and molecular mechanisms by which TGF-β signaling regulates the fate of CNC cells during mandibular development remain unknown. We show here that loss of Tgfbr2 does not affect the migration of CNC cells during mandibular development. TGF-β signaling is specifically required for cell proliferation in Meckel's cartilage and the mandibular anlagen and for the formation of the coronoid, condyle and angular processes. TGF-β-mediated connective tissue growth factor (CTGF) signaling is critical for CNC cell proliferation. Exogenous CTGF rescues the cell proliferation defect in Meckel's cartilage of Tgfbr2fl/fl;Wnt1-Cre mutants, demonstrating the biological significance of this signaling cascade in chondrogenesis during mandibular development. Furthermore, TGF-β signaling controls Msx1 expression to regulate mandibular osteogenesis as Msx1 expression is significantly reduced in Tgfbr2fl/fl;Wnt1-Cre mutants. Collectively, our data suggest that there are differential signal cascades in response to TGF-β to control chondrogenesis and osteogenesis during mandibular development.  相似文献   

18.
Somatic mutations of the fibroblast growth factor receptor 3 (FGFR3) gene were detected by peptide nucleic acid (PNA)-mediated real-time PCR clamping. Mutation was detected in negative control containing only wild-type DNA due to a misincorporation of dNTPs to PNA binding sites when the amount of template DNA was decreased to 1 ng. Thus, the amount of template DNA was critical determinant of the assay sensitivity in PNA-mediated PCR clamping. Assay conditions were optimized to detect FGFR3 mutations in exons 7, 10, and 15, at a concentration of more than 1% mutated DNA using 50 ng of genomic DNA as the template. Mutations were detected in 12 of 13 (92.3%) tumor tissues and 11 of 13 (84.6%) urine samples from patients with superficial bladder cancer, while no mutations were detected in tissues and/or urine samples from patients with muscle-invasive bladder cancer or chronic cystitis.  相似文献   

19.
In the developing limb bud, mesenchymal cells show position-specific affinity, suggesting that the positional identity of the cells is represented as their surface properties. Since the affinity is regulated by glycosylphosphatidylinositol (GPI)-anchored cell surface proteins, and by EphA4 receptor tyrosine kinase, we hypothesized that the GPI-anchored ligand, the ephrin-A family, also contributes to the affinity. Here, we describe the role of ephrin-A2 in the chick limb bud. Ephrin-A2 protein is uniformly distributed in the limb bud during early limb development. As the limb bud grows, expression of ephrin-A2 is strong in its proximal-to-intermediate regions, but weak distally. The position-dependent expression is maintained in vitro, and is regulated by FGF protein, which is produced in the apical ectodermal ridge. To investigate the role of ephrin-A2 in affinity and in cartilage morphogenesis of limb mesenchyme, we ectopically expressed ephrin-A2 in the limb bud using the retrovirus vector, RCAS. Overexpressed ephrin-A2 modulated the affinity of the mesenchymal cells that differentiate into autopod elements. It also caused malformation of the autopod skeleton and interfered with cartilage nodule formation in vitro without inhibiting chondrogenesis. These results suggest that ephrin-A2 regulates the position-specific affinity of limb mesenchyme and is involved in cartilage pattern formation in the limb.  相似文献   

20.
Cartilage of the vertebrate jaw is derived from cranial neural crest cells that migrate to the first pharyngeal arch and form a dorsal "maxillary" and a ventral "mandibular" condensation. It has been assumed that the former gives rise to palatoquadrate and the latter to Meckel's (mandibular) cartilage. In anamniotes, these condensations were thought to form the framework for the bones of the adult jaw and, in amniotes, appear to prefigure the maxillary and mandibular facial prominences. Here, we directly test the contributions of these neural crest condensations in axolotl and chick embryos, as representatives of anamniote and amniote vertebrate groups, using molecular and morphological markers in combination with vital dye labeling of late-migrating cranial neural crest cells. Surprisingly, we find that both palatoquadrate and Meckel's cartilage derive solely from the ventral "mandibular" condensation. In contrast, the dorsal "maxillary" condensation contributes to trabecular cartilage of the neurocranium and forms part of the frontonasal process but does not contribute to jaw joints as previously assumed. These studies reveal the morphogenetic processes by which cranial neural crest cells within the first arch build the primordia for jaw cartilages and anterior cranium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号