共查询到20条相似文献,搜索用时 0 毫秒
1.
Interspecific hybrids provide insights into fundamental genetic principles, and may prove useful for biotechnological applications and as tools for the conservation of endangered species. In the present study, interspecies hybrids were generated between the Korean ring-necked pheasant ( Phasianus colchicus) and the White Leghorn chicken ( Gallus gallus domesticus). We determined whether these hybrids were good recipients for the production of germline chimeric birds. PCR-based species-specific amplification and karyotype analyses showed that the hybrids inherited genetic material from both parents. Evaluation of biological function indicated that the growth rates of hybrids during the exponential phase (body weight/week) were similar to those of the pheasant but not the chicken, and that the incubation period for hatching was significantly different from that of both parents. Primordial germ cells (PGCs) of hybrids reacted with a pheasant PGC-specific antibody and circulated normally in blood vessels. The peak time of hybrid PGC migration was equivalent to that of the pheasant. In late embryonic stages, germ cells were detected by the QCR1 antibody on 15 d male gonads and were normally localized in the seminiferous cords. We examined the migration ability and developmental localization of exogenous PGCs transferred into the blood vessels of 63 h hybrid embryos. Donor-derived PGCs reacted with a donor-specific antibody were detected on 7 d gonads and the seminiferous tubules of hatchlings. Therefore, germ cell transfer into developing embryos of an interspecies hybrid can be efficiently used for the conservation of threatened animals and endangered species, and many biotechnological applications. 相似文献
2.
Summary Lucifer Yellow-Dextran labelling of lower layer cells (LLC), sometimes together with upper layer cells (ULC), of the 64-cell Barbus conchonius embryo resulted in labelled primordial germ cells (PGCs) at 12 h after fertilization (a.f.) in about 25% of cases. The presence of labelled PGCs was independent of the location of the injected blastomere with respect to the later orientation of the embryonic axis. After injection of an ULC alone, however, labelled PGCs were never found. Also, the distribution of labelled somatic cells differed between the ULC- and LLC-injected embryos. When we found fluorescent PGCs, only a few of them were labelled, suggesting that either a single predecessor exists earlier than the 64-cell stage or that the formation of germ cells is a polyclonal process. Tracing the fluorescent cells at successive stages of development shows an extensive mixing with unlabelled cells during the epiboly stage, which might well be the cause of partly unpredictable cell lineages. The chance of being committed to a specific fate is different for the ULC and LLC descendants. This might be due to relatively limited cell mixing between these two cell populations. 相似文献
3.
Spermatogonial stem cells (SSCs) reside in undifferentiated type-A spermatogonia and contribute to continuous spermatogenesis by maintaining the balance between self-renewal and differentiation, thereby meeting the biological demand in the testis. Spermatogonia have to date been characterized principally through their morphology, but we herein report the detailed characterization of undifferentiated spermatogonia in mouse testes based on their gene expression profiles in combination with topological features. The detection of the germ cell-specific proteins Nanos2 and Nanos3 as markers of spermatogonia has enabled the clear dissection of complex populations of these cells as Nanos2 was recently shown to be involved in the maintenance of stem cells. Nanos2 is found to be almost exclusively expressed in A s to A pr cells, whereas Nanos3 is detectable in most undifferentiated spermatogonia (A s to A al) and differentiating A 1 spermatogonia. In our present study, we find that A s and A pr can be basically classified into three categories: (1) GFRα1 +Nanos2 +Nanos3 −Ngn3−, (2) GFRα1 +Nanos2 +Nanos3 +Ngn3−, and (3) GFRα1 −Nanos2 ± Nanos3 +Ngn3+. We propose that the first of these groups is most likely to include the stem cell population and that Nanos3 may function in transit amplifying cells. 相似文献
4.
Pluripotent stem cells, termed embryonic germ (EG) cells, have been generated from both human and mouse primordial germ cells (PGCs). Like embryonic stem (ES) cells, EG cells have the potential to differentiate into all germ layer derivatives and may also be important for any future clinical applications. The development of PGCs in vivo is accompanied by major epigenetic changes including DNA demethylation and imprint erasure. We have investigated the DNA methylation pattern of several imprinted genes and repetitive elements in mouse EG cell lines before and after differentiation. Analysed cell lines were derived soon after PGC specification, “early”, in comparison with EG cells derived after PGC colonisation of the genital ridge, “late” and embryonic stem (ES) cell lines, derived from the inner cell mass (ICM). Early EG cell lines showed strikingly heterogeneous DNA methylation patterns, in contrast to the uniformity of methylation pattern seen in somatic cells (control), late EG cell and ES cell lines. We also observed that all analysed XX cell lines exhibited less methylation than XY. We suggest that this heterogeneity may reflect the changes in DNA methylation taking place in the germ cell lineage soon after specification. 相似文献
5.
Germ cell sex is defined by factors derived from somatic cells. CYP26B1 is known to be a male sex-promoting factor that inactivates retinoic acid (RA) in somatic cells. In CYP26B1-null XY gonads, germ cells are exposed to a higher level of RA than in normal XY gonads and this activates Stra8 to induce meiosis while male-specific gene expression is suppressed. However, it is unknown whether meiotic entry by an elevated level of RA is responsible for the suppression of male-type gene expression. To address this question, we have generated Cyp26b1/Stra8 double knockout (dKO) embryos. We successfully suppressed the induction of meiosis in CYP26B1-null XY germ cells by removing the Stra8 gene. Concomitantly, we found that the male genetic program represented by the expression of NANOS2 and DNMT3L was totally rescued in about half of dKO germ cells, indicating that meiotic entry causes the suppression of male differentiation. However, half of the germ cells still failed to enter the appropriate male pathway in the dKO condition. Using microarray analyses together with immunohistochemistry, we found that KIT expression was accompanied by mitotic activation, but was canceled by inhibition of the RA signaling pathway. Taken together, we conclude that inhibition of RA is one of the essential factors to promote male germ cell differentiation, and that CYP26B1 suppresses two distinct genetic programs induced by RA: a Stra8-dependent meiotic pathway, and a Stra8-independent mitotic pathway. 相似文献
6.
Photodynamic therapy (PDT) is a cancer treatment based on the interaction of a photosensitizer, light and oxygen. PDT with
the endogenous photosensitizer, protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) or its derivatives is a modification
of this treatment modality with successful application in dermatology. However, the mechanism of cell destruction by ALA-PDT
has not been elucidated. In this study a human T-cell lymphoma Jurkat cell line was treated with PDT using hexaminolevulinate
(HAL, hexylester of ALA). Four hours following treatment nearly 80% of the cells exhibited typical apoptotic features. Mitochondrial
pro-apoptotic proteins were evaluated by Western blots in subcellular fractionated samples. PDT caused cytosolic translocation
of cytochrome c and nuclear redistribution of apoptosis-inducing factor (AIF), but the release of mitochondrial Smac/DIABLO, Omi/HtrA2 and
EndoG was not observed. The release of cytochrome c was followed by the cleavage of caspase-9 and caspase-3 as well as its downstream substrates, together with oligonucleosomal
DNA fragmentation. The pan-caspases inhibitor, z-VAD.fmk, prevented oligonucleosomal DNA fragmentation, but failed to inhibit
PDT-mediated apoptosis. The apoptotic induction by AIF-mediated caspase-independent pathway was also found after HAL-PDT with
large-scale DNA fragmentation in the presence of z-VAD.fmk. These results demonstrate that cytochrome c-mediated caspase-dependent pathway and AIF-induced caspase-independent pathway are simultaneously involved in the apoptotic
induction by PDT. When the cytochrome c-induced caspase-dependent pathway is blocked, the cells go into apoptosis via AIF-mediated pathway, clearly demonstrating
that the cytochrome c-mediated caspase-dependent pathway is not required for such apoptotic induction. This finding may have an impact on improved
PDT effectiveness. 相似文献
8.
Primordial germ cells (PGCs) are embryonic founders of germ cells that ultimately differentiate into oocytes and spermatogonia. Embryonic proliferation of PGCs starting from E11.5 ensures the presence of germ cells in adulthood, especially in female mammals whose total number of oocytes declines after this initial proliferation period. To better understand mechanisms underlying PGC proliferation in female mice, we constructed a proteome profile of female mouse gonads at E11.5. Subsequent KEGG pathway analysis of the 3,662 proteins profiled showed significant enrichment of pathways involved in fatty acid degradation. Further, the number of PGCs found in in vitro cultured fetal gonads significantly decreased with application of etomoxir, an inhibitor of the key rate-limiting enzyme of fatty acid degradation carnitine acyltransferase I (CPT1). Decrease in PGCs was further determined to be the result of reduced proliferation rather than apoptosis. The inhibition of fatty acid degradation by etomoxir has the potential to activate the Ca 2+/CamKII/5′-adenosine monophosphate-activated protein kinase (AMPK) pathway; while as an upstream activator, activated AMPK can function as activator of p53 to induce cell cycle arrest. Thus, we detected the expressional level of AMPK, phosphorylated AMPK (P-AMPK), phosphorylated p53 (P-p53) and cyclin-dependent kinase inhibitor 1 (p21) by Western blots, the results showed increased expression of them after treatment with etomoxir, suggested the activation of p53 pathway was the reason for reduced proliferation of PGCs. Finally, the involvement of p53-dependent G1 cell cycle arrest in defective proliferation of PGCs was verified by rescue experiments. Our results demonstrate that fatty acid degradation plays an important role in proliferation of female PGCs via the p53-dependent cell cycle regulation. 相似文献
9.
In many animals, the germ line is specified by a distinct cytoplasmic structure called germ plasm (GP). GP is necessary for primordial germ cell (PGC) formation in anuran amphibians including Xenopus. However, it is unclear whether GP is a direct germ cell determinant in vertebrates. Here we demonstrate that GP acts autonomously for germ cell formation in Xenopus.EGFP-labeled GP from the vegetal pole was transplanted into animal hemisphere of recipient embryos. Cells carrying transplanted GP (T-GP) at the ectopic position showed characteristics similar to the endogenous normal PGCs in subcellular distribution of GP and presence of germ plasm specific molecules. However, T-GP-carrying-cells in the ectopic tissue did not migrate towards the genital ridge. T-GP-carrying cells from gastrula or tailbud embryos were transferred into the endoderm of wild-type hosts. From there, they migrated into the developing gonad. To clarify whether ectopic T-GP-carrying cells can produce functional germ cells, they were identified by changing the recipients, from the wild-type Xenopus to transgenic Xenopus expressing DsRed2. After transferring T-GP carrying cells labeled genetically with DsRed2 into wild-type hosts, we could find chimeric gonads in mature hosts. Furthermore, the spermatozoa and eggs derived from T-GP-carrying cells were fertile. Thus, we have demonstrated that Xenopus germ plasm is sufficient for germ cell determination. 相似文献
11.
Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries such as chrome plating, welding, wood processing and tanneries. As one of the world?s leading producers of chromium compounds, the U.S. is facing growing challenges in protecting human health against multiple adverse effects of CrVI. CrVI is rapidly converted to CrIII intracellularly, and can induce apoptosis through different mechanisms. Our previous studies demonstrated postnatal exposure to CrVI results in a delay or arrest in follicle development and puberty. Pregnant rats were treated with 25 ppm potassium dichromate (CrVI) from gestational day (GD) 9.5 to 14.5 through drinking water, placentae were removed on GD 20, and total Cr was estimated in the placentae; ovaries were removed from the F1 offspring on postnatal day (PND)-1 and various analyses were performed. Our results show that gestational exposure to CrVI resulted in (i) increased Cr concentration in the placenta, (ii) increased germ cell apoptosis by up-regulating p53/p27–Bax–caspase-3 proteins and by increasing p53–SOD-2 co-localization; (iii) accelerated germ cell cyst (GCC) breakdown; (iv) advanced primordial follicle assembly and primary follicle transition and (v) down regulation of p-AKT, p-ERK and XIAP. As a result of the above events, CrVI induced early reproductive senescence and decrease in litter size in F1 female progeny. 相似文献
12.
Complementary DNA overexpression and short hairpin RNA interference approaches were evaluated for decreasing expression of primordial germ cell (PGC) marker genes and thereby sterilizing channel catfish, Ictalurus punctatus, by delivering knockdown constructs driven by a constitutive promoter from yeast and a copper transport protein gene into fish embryos by electroporation. Two PGC marker genes, nanos and dead end, were the target knockdown genes, and their expressions, along with that of an off-target gene, vasa, were evaluated temporally using real-time polymerase chain reaction. Copper sulfate was evaluated as a repressor compound. Some of the constructs knocked down PGC marker gene expression, and some of the constructs were partially repressed by application of 0.1-ppm copper sulfate. When the rate of sexual maturity was compared for three-year-old broodfish that had been exposed to the sterilizing constructs during embryologic development and controls that had not been exposed, several treatments had reduced sexual maturity for the exposed fish. Of two promoter systems evaluated, the one which had been designed to be less sensitive to copper generally was more effective at achieving sterilization and more responsive to repression. Knockdown constructs based on 3′ nanos short hairpin RNA interference appeared to result in the best repression and restoration of normal sexual maturity. We conclude that these copper-based systems exhibited good potential for repressible transgenic sterilization. Optimization of this system could allow environmentally safe application of transgenic technology and might be applicable to other applications for aquatic organisms. 相似文献
13.
Quantitative cell and organelle dynamics of the male gamete-producing lineage of Plumbago zeylanica were examined using serial transmission electron microscopic reconstruction at five stages of development from generative
cell inception to sperm cell maturity. The founder population of generative cell organelles includes an average of 3.88 plastids,
54.9 mitochondria, and 3.7 vacuoles. During development the volume of the pollen grain increases from 6,200 μm 3 in early microspores to 115,000 μm 3 at anthesis, cell volume of the male germ lineage decreases more than 67% from 362.3 μm 3 to 118.4 μm 3. By the time the generative cell separates from the intine, plastid numbers increase by >600%, mitochondria by 250%, and
vesicles by 43 times. A cellular projection elongates toward and establishes an association with the vegetative nucleus; this
leading edge contains plastids and numerous mitochondria. When the generative cell completes its separation from the intine,
organellar polarity is reversed and plastids migrate to the opposite pole of the cell. Cytoplasmic microtubules are common
in association with cellular organelles. Plastids accumulate at the distal end of the cell as a linked mass, apparently adhered
by lateral electron dense regions. Before division of the highly polarized generative cell, plastids decrease in number by
16%, whereas mitochondria increase by ∼90% and vacuoles increase by ∼140% from the prior stage. After mitosis, the resultant
sperm cells differ in size and organelle content. The sperm cell associated with the vegetative nucleus (S vn) contains 62.7% of the cytoplasm volume, 87% of the mitochondria, 280.4 vesicles (79% of those in the generative cell), and
0.6% of the plastids. At maturity, the S vn mitochondria increase by 31% and the cell contains an average of 0.4 plastids, 158.9 vesicles, and 0.36 microbodies. The
mature unassociated sperm (S ua) contains 39.8 mitochondria (up 3.3%), 24.3 plastids (down 31%), 91.1 vesicles (up 54.9%), and 3.18 microbodies. The small
number of organelles initially in the generative cell, followed by their rapid multiplication in a shrinking cytoplasm suggests
a highly competitive cytoplasmic environment that would tend to eliminate residual organellar heterogeneity. Cell and cytoplasmic
volumes vary as a consequence of fluctuations in the number and size of large vesicles or vacuoles, as well as loss of cytoplasmic
volume by (1) formation of “false cells” involving amitotic cytokinesis, (2) “pinching off” of cytoplasm, and (3) dehydration
of pollen contents prior to anthesis. 相似文献
14.
The s-SHIP protein is a shorter isoform of the longer SHIP1 protein and lacks the N-terminal SH2 domain region contained in SHIP1. s-SHIP is expressed in ES cells and in enriched bone marrow stem cells, and may be controlled by a promoter within intron 5 of the ship1 gene. We therefore examined the potential specificity of promoter activity in ES cells of an intron 5/intron 6 ship1 genomic segment and its tissue specificity within transgenic mice expressing GFP from this promoter region. The results indicate that s-SHIP promoter activity is specific for ES cells in vitro and for known and presumptive stem/progenitor cells throughout embryo development of the transgenic mice. Specific GFP expression was observed in the blastocyst, primordial germ cells, thymus, arterioles, osteoblasts, and skin epidermis. The epidermis/epithelium is the progenitor for hair follicles, mammary tissue, and prostate. Interestingly, each of these latter tissues acquired a few GFP-positive cells in the course of their development from the epithelial layers, and these cells express marker proteins for stem/progenitor cells. These results identify potential stem cell populations, mark these cells for analyses in normal and cancer development, and implicate s-SHIP as an important protein in stem/progenitor cell function. 相似文献
15.
It is thought that small intestinal epithelial stem cell progeny, via Notch signaling, yield a Hes1-expressing columnar lineage progenitor and an Atoh1 (also known as Math1)-expressing common progenitor for all granulocytic lineages including enteroendocrine cells, one of the body's largest populations of endocrine cells. Because Neurogenin 3 (Neurog3) null mice lack enteroendocrine cells, Neurog3-expressing progenitors derived from the common granulocytic progenitor are thought to produce the enteroendocrine lineage, although more recent work indicates that Neurog3+ progenitors also contribute to non-enteroendocrine lineages. We aimed to test this model and better characterize the progenitors leading from the stem cells to the enteroendocrine lineage. We investigated clones derived from enteroendocrine precursors and found no evidence of a common granulocytic progenitor that routinely yields all granulocytic lineages. Rather, enteroendocrine cells are derived from a short-lived bipotential progenitor whose offspring, probably via Notch signaling, yield a Neurog3+ cell committed to the enteroendocrine lineage and a progenitor committed to the columnar lineage. The Neurog3+ cell population is heterogeneous; only about 1/3 are slowly cycling progenitors, the rest are postmitotic cells in early stages of enteroendocrine differentiation. No evidence was found that Neurog3+ cells contribute to non-enteroendocrine lineages. Revised lineage models for the small intestinal epithelium are introduced. 相似文献
17.
In whole mounts of seminiferous tubules of C3H/101 F 1 hybrid mice, spermatogonia were counted in various stages of the epithelial cycle. Furthermore, the total number of Sertoli cells per testis was estimated using the disector method. Subsequently, estimates were made of the total numbers of the different spermatogonial cell populations per testis. The results of the cell counts indicate that the undifferentiated spermatogonia are actively proliferating from stage XI until stage IV. Three divisions of the undifferentiated spermatogonia are needed to obtain the number of A1 plus undifferentiated spermatogonia produced each epithelial cycle. Around stage VIII almost two-thirds of the Apr and all of the Aal spermatogonia differentiate into A1 spermatogonia. It was estimated that there are 2.5 × 106 differentiating spermatogonia and 3.3 × 105 undifferentiated spermatogonia per testis. There are about 35,000 stem cells per testis, constituting about 0.03% of all germ cells in the testis. It is concluded that the undifferentiated spermatogonia, including the stem cells, actively proliferate during about 50% of the epithelial cycle. 相似文献
18.
Sperm of many animals must complete an exocytotic event, the acrosome reaction, in order to fuse with eggs. In mammals, acrosome reactions are triggered during sperm contact with the egg extracellular matrix, or zona pellucida, by the matrix glycoprotein ZP3. Here, we show that ZP3 stimulates production of phosphatidylinositol-(3,4,5)-triphosphate in sperm membranes. Phosphatidylinositol-3-kinase antagonists that prevent acrosome reactions and fertilization in vitro, while generation of this phosphoinositide in the absence of ZP3 triggered acrosome reactions. Downstream effectors of phosphatidylinositol-(3,4,5)-triphosphate in sperm include the protein kinases, Akt and PKCzeta. These studies outline a signal transduction pathway that plays an essential role in the early events of mammalian fertilization. 相似文献
19.
The programmed cell death 5 (PDCD5) protein plays an important apoptosis-accelerating role in cells undergoing apoptosis. Decreased expression of PDCD5 has been detected in various human carcinomas. Here we describe that one potent short interfering RNA (siRNA) against the PDCD5 (siPDCD5) specifically inhibits the expression of PDCD5 at both the mRNA and protein level. Cells with decreased PDCD5 expression displayed reduced sensitivity to an apoptotic stimulus induced by Bax overexpression in HeLa, HEK293 and 293T cell lines. Furthermore, we also show that siPDCD5 inhibited both caspase-3 activity and procaspase-3 cleavage. Suppressed expression of PDCD5 attenuates the release of cytochrome c from mitochondria to cytosol induced by Bax overexpression. This phenomenon is accompanied by the reduced translocation of Bax from the cytosol to mitochondria. MTT assay shows that targeted suppression of PDCD5 expression markedly promoted cell proliferation in Hela and HEK293 cell lines. Our data suggests that PDCD5 may exert its effects through pathway of mitochondria by modulating Bax translocation, cytochrome c release and caspase 3 activation directly or indirectly, and that decreased PDCD5 expression may be one of the mechanisms by which tumor cells achieve resistance to apoptotic stimulus induced by anticancer drugs. 相似文献
20.
Human prostatic carcinoma frequently metastasizes to bone tissue and activates bone metabolism, especially bone formation, at the site of metastasis. It has been reported that an extract of prostatic carcinoma and conditioned medium (CM) of a human prostatic carcinoma cell line, PC-3, established from a bone metastastic lesion, stimulate osteoblastic cell proliferation. However, there is little information about the effect of PC-3 CM on the differentiation of osteoblastic cells. In this study, we investigated the effect of PC-3 CM on the differentiation of two types of osteoblastic cells, primary fetal rat calvaria (RC) cells containing many undifferentiated osteoprogenitor cells, and ROS 17/2.8, a well-differentiated rat osteosarcoma cell line. PC-3 CM inhibited bone nodule formation and the activity of alkaline phosphatase (ALPase), an osteoblastic marker enzyme, on days 7, 14, and 21 (RC cells) or 3, 6, and 9 (ROS 17/2.8 cells) in a dose-dependent manner (5–30% CM). However, the CM did not affect cell proliferation or cell viability. PC-3 CM was found to markedly block the gene expression of ALPase and osteocalcin (OCN) mRNAs but had no effect on the mRNA expression of osteopontin (OPN), the latter two being noncollagenous proteins related to bone matrix mineralization. These findings suggest that PC-3 CM contains a factor that inhibits osteoblastic cell differentiation and that this factor may be involved in the process of bone metastasis from prostatic carcinoma. J. Cell. Biochem. 67:248–256, 1997. © 1997 Wiley-Liss, Inc. 相似文献
|