首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The arthropod compound eye is one of the three main types of eyes observed in the animal kingdom. Comparison of the eyes seen in Insecta, Crustacea, Myriapoda and Chelicerata reveals considerable variation in terms of overall cell number, cell positioning, and photoreceptor rhabdomeres, yet, molecular data suggest there may be unexpected similarities. We review here the role of Pax6 in eye development and evolution and the relationship of Pax6 with other retinal determination genes and signaling pathways. We then discuss how the study of changes in Pax6 primary structure, in the gene networks controlled by Pax6 and in the relationship of Pax6 with signaling pathways may contribute to our insight into the relative role of conserved molecular-genetic mechanisms and emergence of evolutionary novelty in shaping the ommatidial eyes seen in the Arthropoda.  相似文献   

2.
The Pax-6 protein is vital for eye development in all seeing animals, from sea urchins to humans. Either of the Pax6 genes in Drosophila (twin of eyeless and eyeless) can induce a gene cascade leading to formation of entire eyes when expressed ectopically. The twin of eyeless (toy) gene in Drosophila is expressed in the anterior region of the early fly embryo. At later stages it is expressed in the brain, ventral nerve cord and (eventually) the visual primordium that gives rise to the eye-antennal imaginal discs of the larvae. These discs subsequently form the major part of the adult head, including compound eyes. We have searched for genes that are required for normal toy expression in the early embryo to elucidate initiating events of eye organogenesis. Candidate genes identified by mutation analyses were subjected to further knock-out and miss-expression tests to investigate their interactions with toy. Our results indicate that the head-specific gap gene empty spiracles can act as a repressor of Toy, while ocelliless (oc) and spalt major (salm) appear to act as positive regulators of toy gene expression.  相似文献   

3.
4.
5.
6.
Pax6 lights-up the way for eye development   总被引:11,自引:0,他引:11  
  相似文献   

7.
8.
The roles of Pax6 were investigated in the murine eye and the olfactory epithelium by analysing gene expression and distribution of Pax6(-/-) cells in Pax6(+/+) <--> Pax6(-/-) chimeras. It was found that between embryonic days E10.5 and E16.5 Pax6 is autonomously required for cells to contribute fully not only to the corneal epithelium, where Pax6 is expressed at high levels, but also to the to the corneal stroma and endothelium, where the protein is detected at very low levels. Pax6(-/-) cells contributed only poorly to the neural retina, forming small clumps of cells that were normally restricted to the ganglion cell layer at E16.5. Pax6(-/-) cells in the retinal pigment epithelium could express Trp2, a component of the pigmentation pathway, at E14.5 and a small number went on to differentiate and produce pigment at E16.5. The segregation and near-exclusion of mutant cells from the nasal epithelium mirrored the behaviour of mutant cells in other developmental contexts, particularly the lens, suggesting that common primary defects may be responsible for diverse Pax6-related phenotypes.  相似文献   

9.
During early development, the neurogenic genes of Drosophila melanogaster are involved in the control of cell fates in the neurectoderm; almondex (amx) belongs to this category of genes. We have identified the amx locus and rescued the amx embryonic neurogenic phenotype with a 1.5 kb DNA fragment. Using a small deficiency, we generated a new amx mutant background called amx(m), which is a null allele. Besides the characteristic neurogenic maternal effect caused by loss of amx, amx(m) flies display a new imaginal phenotype resembling loss of function of Notch. We describe amx-induced misregulation of the Notch pathway target E(spl) m7 in embryos and genetic interactions between amx and Notch pathway mutants in adult flies. These data show that wildtype amx acts as a novel positive regulator of the Notch pathway and is required at different levels during development.  相似文献   

10.
11.
12.
13.
 Although Pax6 is required during eye development in rodents and humans, little is known about the precise role of the protein in this process. To aid in the interpretation of functional studies, we have determined the precise spatial and temporal distributions of the Pax6 protein in the eye. We find that Pax6 is initially distributed contiguously throughout a large domain of the anterior neural plate of zebrafish, including the presumptive eye fields and the dorsal diencephalon. After evagination of the optic vesicle, Pax6 becomes restricted to all proliferating cells of the pigment epithelial and neural layers of the retina. Pax6 is downregulated in most cells concomitant with differentiation. However, it remains present in several mature cell types of the eye including amacrine cells and the lens and corneal epithelia. This expression is conserved across diverse vertebrate species and suggests that Pax6 has additional conserved functions in the mature eye. Received: 27 August 1996 / Accepted: 21 October 1996  相似文献   

14.
The homozygous mouse mutant aphakia (ak) has been characterized by bilaterally aphakic eyes without a pupil [Varnum DS, Stevens, LC (1968): J Hered 59:147–150]. The mutation was mapped to chromosome 19 [Varnum DS, Stevens, LC (1975): Mouse News Lett 53:35]. Our linkage studies yielded a precise localization of the ak gene 0.6 ± 0.3 cM proximal to the microsatellite marker D19Mit10 and 0.7 ± 0.4 cM distal to D19Mit4 and D19Mit91. No recombination was found with the marker D19Mit9 among 418 backcross offspring tested. The developmental control gene Pax2 mapped 11.0 ± 3.5 cM proximal to ak and is excluded as a candidate gene. Sequence analysis of Fgf8 and Chuk1, which are localized close to the marker D19Mit10, detected no mutations in the ak/ak mutants. Histological analysis of homozygous mutants suggested the arrest of lens development at the lens stalk stage, a transient morphological structure during the formation of the lens vesicle. In the lens remnants, Pax6 and Six3 are expressed, whereas in the persisting lens stalk only Pax6 was detected. The expression pattern of Pax2 appeared normal; Cryaa expression could not be detected. As a consequence of the arrested lens development, other ocular tissues that require for their development information from the intact lens, such as iris, ciliary muscle, retina, and vitreous body, are absent or formed abnormally. Dev. Genet. 23:299–316, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
16.
We analyzed the expression and function of eyeless (ey) and twin of eyeless (toy) in the embryonic central nervous system (CNS) of Drosophila. Both genes are differentially expressed in specific neuronal subsets (but not in glia) in every CNS neuromere, and in the brain, specific cell populations co-expressing both proteins define a longitudinal domain which is intercalated between broad exclusive expression domains of ey and toy. Studies of genetic null alleles and dsRNA interference did not reveal any gross neuroanatomical effects of ey, toy, or ey/toy elimination in the embryonic CNS. In contrast, targeted misexpression of ey, but not of toy, resulted in profound axonal abnormalities in the embryonic ventral nerve cord and brain.  相似文献   

17.
果蝇程序化死亡基因5(PDCD5)同源cDNA的克隆和序列分析   总被引:2,自引:0,他引:2  
 为了解人类白血病细胞凋亡相关新基因 TFAR1 9(PDCD5,programmed cell death5)在不同种属间的序列同源性 ,利用 EST(expression sequence tag)拼接、RT- PCR、DNA序列测定技术及计算机分析技术 ,首次成功地进行了果蝇 PDCD5同源 c DNA编码区基因克隆和序列分析 .发现果蝇与小鼠及果蝇与人 PDCD5在核苷酸水平上分别有 57.5%和 57.1 %的同源性 ,在氨基酸水平上分别有 46.8%和 46.4%的同源性 .功能区分析发现 ,果蝇 PDCD5c DNA编码 1 33个氨基酸 ,计算机预测可能是一种核蛋白 ,含 5个可能的酪蛋白激酶 (casein kinase )磷酸化位点 ,2个可能的 PKC磷酸化位点 ,与人 PDCD5的功能区类似 .因而果蝇 PDCD5是与人 PDCD5同源的新基因 ,可能都与细胞程序化死亡相关 .  相似文献   

18.
19.
Cranial placodes are focal regions of columnar epithelium next to the neural tube that contribute to sensory ganglia and organs in the vertebrate head, including the olfactory epithelium and the crystalline lens of the eye. Using focal dye labelling within the presumptive placode domain, we show that lens and nasal precursors arise from a common territory surrounding the anterior neural plate. They then segregate over time and converge to their final positions in discrete placodes by apparently directed movements. Since these events closely parallel the separation of eye and antennal primordia (containing olfactory sensory cells) from a common imaginal disc in Drosophila, we investigated whether the vertebrate homologues of Distalless (Dll) and Eyeless (Ey), which determine antennal and eye identity in the fly, play a role in segregation of lens and nasal precursors in the chick. Dlx5 and Pax6 are initially co-expressed by future lens and olfactory cells. As soon as presumptive lens cells acquire columnar morphology all Dlx family members are down-regulated in the placode, while Pax6 is lost in the olfactory region. Lens precursor cells that express ectopic Dlx5 never acquire lens-specific gene expression and are excluded from the lens placode to cluster in the head ectoderm. These results suggest that the loss of Dlx5 is required for cells to adopt a lens fate and that the balance of Pax6 and Dlx expression regulates cell sorting into appropriate placodal domains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号