首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
We previously described the entity of cold-induced apoptosis to rat hepatocytes and characterized its major, iron-dependent pathway. However, after cold incubation in some solutions, e.g. cell culture medium, hepatocytes show an additional, yet uncharacterized component of cold-induced injury. We here assessed the effects of organ preservation solutions on both components of cold-induced injury and tried to further characterize the iron-independent component. None of the preservation solutions (University of Wisconsin, histidine-tryptophan-ketoglutarate, Euro-Collins, histidine-lactobionate, sodium-lactobionate-sucrose and Celsior solutions) provided significant protection against cold-induced cell injury (LDH release after 24-h cold incubation/3h rewarming >65% for all solutions); three solutions even enhanced cold-induced injury. However, when the predominant iron-dependent mechanism was eliminated by the addition of iron chelators, all preservation solutions yielded hepatocyte protection that was clearly superior to the one obtainable in cell culture medium or Krebs-Henseleit buffer with iron chelators (LDH release after 24-h cold incubation/3h rewarming 相似文献   

2.
We compared Dulbecco’s modified Eagle’s medium (DMEM), saline, Euro-Collins (EC) solution and University of Wisconsin (UW) solution to determine which was best for cold preservation of rat osteochondral tissues (OCTs). After 7 days’ cold preservation, OCTs kept in UW solution had the highest relative viable cell number by the tetrazolium assay and the lowest activity of lactate dehydrogenase released from damaged cells. Histological evaluation revealed chondrocyte deformity, such as shrunken cytoplasm and pyknotic nuclei, particularly in the deeper layer of articular cartilage after preservation in saline and EC solution and predominantly in all layers if preserved in DMEM. In contrast, chondrocyte morphology in all layers of the articular cartilage preserved in UW solution was relatively unchanged and remained similar to fresh OCTs. It is therefore concluded that UW solution is the most suitable for cold preservation of rat OCTs as well as solid organs.  相似文献   

3.

Introduction

Endothelial barrier function is pivotal for the outcome of organ transplantation. Since hypothermic preservation (gold standard) is associated with cold-induced endothelial damage, endothelial barrier function may benefit from organ preservation at warmer temperatures. We therefore assessed endothelial barrier integrity and viability as function of preservation temperature and perfusion solution, and hypothesized that endothelial cell preservation at subnormothermic conditions using metabolism-supporting solutions constitute optimal preservation conditions.Methods: Human umbilical vein endothelial cells (HUVEC) were preserved at 4–37 °C for up to 20 h using Ringer's lactate, histidine–tryptophan–ketoglutarate solution, University of Wisconsin (UW) solution, Polysol, or endothelial cell growth medium (ECGM). Following preservation, the monolayer integrity, metabolic capacity, and ATP content were determined as positive parameters of endothelial cell viability. As negative parameters, apoptosis, necrosis, and cell activation were assayed. A viability index was devised on the basis of these parameters.Results: HUVEC viability and barrier integrity was compromised at 4 °C regardless of the preservation solution. At temperatures above 20 °C, the cells' metabolic demands outweighed the preservation solutions' supporting capacity. Only UW maintained HUVEC viability up to 20 °C. Despite high intracellular ATP content, none of the solutions were capable of sufficiently preserving HUVEC above 20 °C except for ECGM.Conclusion: Optimal HUVEC preservation is achieved with UW up to 20 °C. Only ECGM maintains HUVEC viability at temperatures above 20 °C.  相似文献   

4.
5.
Improved preservation techniques have the potential to improve transplant outcomes by better maintaining donor organ quality and by making more organs available for allotransplantation. Persufflation, (PSF, gaseous oxygen perfusion) is potentially one such technique that has been studied for over a century in a variety of tissues, but has yet to gain wide acceptance for a number of reasons. A principal barrier is the perception that ex vivo PSF will cause in vivo embolization post-transplant. This review summarizes the extensive published work on heart, liver, kidney, small intestine and pancreas PSF, discusses the differences between anterograde and retrograde PSF, and between PSF and other conventional methods of organ preservation (static cold storage, hypothermic machine perfusion). Prospective implications of PSF within the broader field of organ transplantation, and in the specific application with pancreatic islet isolation and transplant are also discussed. Finally, key issues that need to be addressed before PSF becomes a more widely utilized preservation strategy are summarized and discussed.  相似文献   

6.
Current medical transplantation confronts major problems such as the shortage of donors and geographical restrictions that inhibit efficient utilization of finite donor organs within their storage lives. To overcome these issues, expanding organ preservation time has become a major concern. We investigated whether a strategy which best preserves organ grafts can be achieved by the use of a newly developed refrigerating chamber, which is capable of establishing a supercooled and unfrozen state stably by generating an electrostatic field in its inside. When adult rat organs such as heart, liver, and kidneys were stored in the supercooled conditions, the levels of major biochemical markers leaked from the preserved organs were significantly lower than in the ordinary hypothermic storage. No apparent tissue damages were observed histologically after the supercooled preservation. Our results suggest that the use of this supercooling refrigerator improves organ preservation and may provide an innovative technique for human organ transplantation.  相似文献   

7.
Baicu SC  Taylor MJ 《Cryobiology》2002,45(1):33-48
Control of acidity and preventing intracellular acidosis are recognized as critical properties of an effective organ preservation solution. Buffer capacity and efficiency are therefore important for comparing the relative merits of preservation fluids for optimum hypothermic storage, but these parameters are not available for the variety of organ preservation solutions of interest in transplantation today. Moreover, buffer capacity is dependent upon both concentration and pH such that buffer capacity is not easily predicted for a complex solution containing multiple buffer species. Using standard electrometric methods to measure acid dissociation constants, this study was undertaken to determine the maximum and relative buffer capacities of a variety of new and commonly used hypothermic preservation solutions as a function of temperature. The reference data provided by these measurements show that comparative buffer capacity and efficiency vary widely between the commonly used solutions. Moreover, the fluids containing zwitterionic sulfonic acid buffers such as Hepes possess superior buffering for alpha-stat pH regulation in the region of physiological importance.  相似文献   

8.
Summary Rat liver parenchymal cells were isolated by EDTA perfusion and were subsequently purified by Percoll centrifugation. The freshly isolated liver cells had a mean viability of 95% as judged by trypan blue exclusion. Isolated liver parenchymal cells were then stored at 0°C for up to 1 wk in University of Wisconsin solution (UW). During this hypothermic preservation, the viability was only slightly reduced to 92% after 1 d and to 85% after 3 d at 0°C. Thereafter, the viability decreased rapidly. After cold storage for up to 3 d, it was possible to use the parenchymal liver cells either in short-term suspension or in cell culture. The attachment efficiency in cell culture was the same for freshly isolated liver cells (84%) and after 2 d cold preservation (81%). The cytochrome P450 content and the enzyme activities of soluble expoxide hydrolase, UDP-glucuronosyl transferase, phenol sulfotransferase, and glutathione S-transferase were not significantly different between freshly isolated cells and cells after 3 d of hypothermic preservation. Furthermore, freshly isolated and intact liver cells stored for 3 d were used in the cell-mediated Salmonella mutagenicity test as a metabolizing system. Both fresh and stored liver parenchymal cells metabolized benzo(a)pyrene, 2-aminoanthracene, and cyclophosphamide to their ultimate mutagens. Thus, it was clearly demonstrated that EDTA-isolated liver parenchymal cells retain their xenobiotic metabolizing capacity after short-term hypothermic preservation for up to several days and, therefore, may help to maximize the usefulness of rarely available liver parenchymal cells such as those from humans and help to reduce the number of experimental animals required for pharmacological and toxicologicalin vitro investigations.  相似文献   

9.
段云峰  律娜  蔡峰  朱宝利 《生物工程学报》2020,36(12):2525-2540
肠道菌群与人体健康的关系密切,通过检测肠道菌群可以获得有关健康的信息。新鲜粪便不易获得,很难做到快速低温冷冻,在进行标准化和大规模人群采样时,可用于常温条件下采集和保存样本的保存液可以弥补采集样本数量多、地域分布广、现场采样条件多样、工作量大、运输条件差等条件不足。本研究招募了5名健康志愿者,采集他们的粪便样本后,通过对比不同市售微生物样本采集常温保存液对新鲜粪便样本的影响,评估了各类保存液的保存效果。在室温下把粪便放置于5种保存液,在第0、1、3、7、15、30天提取元基因组DNA,进行16S rRNA V3–V4区高通量测序,来分析不同保存液,在不同时间段对肠道菌群组成的影响。结果显示,不同保存液对肠道菌群的影响存在差异,与对照组相比,不同保存液对样本中的OUT数量影响不大;保存液A、B和C在菌群构成上更接近对照组,保存液D会明显改变肠道菌群组成,使放线菌门(Actinobacteria)和厚壁菌门(Firmicutes)增加;随着时间延长,各类保存液都有降低菌群多样性趋势,保存液E降低菌群多样性更明显;第30天时,5种保存液都会改变肠道菌群构成;肠道菌群组成存在个体差异,是影响各...  相似文献   

10.

Introduction

Our lab has developed an effective nutrient-rich solution that facilitates energy production and control of oxidative stress during static cold storage of the intestine; however, the requirement for oncotic agents, such as hydroxyethylstarch (HES), has not been evaluated. This study investigated the effectiveness and requirement for HES in an intraluminal preservation solution during a clinically relevant period of cold storage.

Methods

Rat intestines were procured, including an intravascular flush with University of Wisconsin solution followed by a ‘back table’ intraluminal flush with a nutrient-rich preservation solution containing varying amounts of HES (n = 6 per group): Group 1, 0%; Group 2, 2.5%; Group 3, 5%; Group 4, 10%. Energetics, oxidative stress, and morphology were assessed over a 24 h time-course of cold storage.

Results

Overall, the 5% HES solution, Group 3, demonstrated superior energetic status (ATP and total adenylates) compared to all groups, P < 0.05. Malondialdehyde levels indicated a reduction in oxidative stress in Groups 3 and 4 (P < 0.05). After 12 h, median modified Parks’ grades for Groups 2 and 3 were significantly lower than Groups 1 and 4, P < 0.05.

Conclusion

Our data suggests that when employing an intraluminal preservation solution for static organ storage, oncotic support is a fundamental requirement; 5% HES is optimal.  相似文献   

11.
Preservation with University of Wisconsin (UW) solution has been implicated in coronary artery endothelial damage and loss of endothelium-dependent vasodilatation. Therefore, the objective of this study was to investigate the effect of this solution on basal nitric oxide (NO) release from porcine coronary endothelial cells (CEC). Cultures were exposed to cold (4 degrees C) storage in UW solution for 6, 8 and 12 h. Parallel cultures were incubated with control medium at 37 degrees C. After treatment, NO release was evaluated by nitrite production, a stable metabolite of NO. Activity of the constitutive endothelial nitric oxide synthase (eNOS) was measured by the conversion [3H]-l-arginine to [3H]-l-citrulline and eNOS protein expression by Western blotting. Nitrite production by control cells was augmented with increasing times of incubation, whereas no change was observed in those cultures preserved with UW solution. Activity of eNOS was significantly decreased compared to the respective control group by cold storage of cells for longer periods than 6 h. Such decrease was correlated with a diminished eNOS protein expression in CEC preserved with UW solution after 8- and 12-h storage. These results suggest that prolonged hypothermic storage of CEC with UW solution does not preserve basal NO release because of a certain loss of eNOS protein, which may contribute to the reported injury of heart transplants after long-term preservation.  相似文献   

12.
We very recently showed (using a blood-free perfusion model) that cold preservation sensitized rat hepatocyte functions to rewarming ischemic injury and that the injury can be prevented by repleting high-energy adenylates in the liver by short-term oxygenated warm reperfusion. Here we investigated whether short-term reperfusion after the preservation period can improve hepatic graft function in a blood reperfusion model. Eighteen-hour cold-preserved rat livers either untreated (Group A) or pretreated by 30-min oxygenated warm reperfusion after preservation (Group B) were subjected to 20-min ischemic rewarming and then reperfused with blood. Livers in Group B compared to Group A exhibited approx. three times increased bile production and bromosulfophthalein excretion, nearly 7-fold decreased swelling, and 1.2-fold improved blood flow. These results suggest that repletion of the energy by short-term oxygenated reperfusion after prolonged preservation may improve markedly initial hepatic graft function.  相似文献   

13.
Mechanisms of the killing of cultured hepatocytes by hydrogen peroxide   总被引:9,自引:0,他引:9  
Mechanisms of H2O2-induced cell injury were explored in primary cultures of rat hepatocytes. Cells prepared from male rats and cultured for 1 day prior to treatment were killed by H2O2 either added directly to the medium at 0.25-2 mM or generated in situ by glucose oxidase (0.25-2 U/ml) or xanthine oxidase (20-120 mM/ml) and 2 mM xanthine. Catalase protected the cells in each case. Lipid peroxidation as measured by the accumulation of malondialdehyde (MDA) preceded the cell death due to H2O2 added directly to the cultures or generated in the medium. The antioxidants N,N'-diphenyl-p-phenylenediamine (DPPD) and promethazine prevented the accumulation of MDA in both cases and protected the cells treated with H2O2 directly. DPPD and promethazine did not react directly with H2O2. Other antioxidants including butylated hydroxytoluene, vitamin E, and N-propylgallate had varied protective activity against the addition of H2O2 in proportion to their ability to reduce MDA accumulation. In glucose oxidase-treated cultures, DPPD and promethazine prevented the cell killing during the first hour but failed to protect between 1 and 3 h despite prevention of lipid peroxidation. The cell killing between 1 and 3 h in the presence of DPPD was prevented by catalase indicating its dependence upon continued generation of H2O2. Further addition of H2O2 in the presence of DPPD also increased the number of dead cells without lipid peroxidation. The data are consistent with at least two mechanisms of hepatocyte killing by H2O2. The first pathway is prevented by the antioxidants DPPD and promethazine and is very likely related to the peroxidation of membrane phospholipids. The second is independent of lipid peroxidation yet dependent upon the continued presence of H2O2.  相似文献   

14.
Fahy GM  Wowk B  Wu J  Paynter S 《Cryobiology》2004,48(1):22-35
Long-term preservation of complex engineered tissues and organs at cryogenic temperatures in the absence of ice has been prevented to date by the difficulty of discovering combinations of cryoprotectants that are both sufficiently non-toxic and sufficiently stable to allow viability to be maintained and ice formation to be avoided during slow cooling to the glass transition temperature and subsequent slow rewarming. A new theory of the origin of non-specific cryoprotectant toxicity was shown to account, in a rabbit renal cortical slice model, for the toxicities of 20 vitrification solutions and to permit the design of new solutions that are dramatically less toxic than previously known solutions for diverse biological systems. Unfertilized mouse ova vitrified with one of the new solutions were successfully fertilized and regained 80% of the absolute control (untreated) rate of development to blastocysts, whereas ova vitrified in VSDP, the best previous solution, developed to blastocysts at a rate only 30% of that of controls. Whole rabbit kidneys perfused at -3 degrees C with another new solution at a concentration of cryoprotectant (8.4M) that was previously 100% lethal at this temperature exhibited no damage after transplantation and immediate contralateral nephrectomy. It appears that cryoprotectant solutions that are composed to be at the minimum concentrations needed for vitrification at moderate cooling rates are toxic in direct proportion to the average strength of water hydrogen bonding by the polar groups on the permeating cryoprotectants in the solution. Vitrification solutions that are based on minimal perturbation of intracellular water appear to be superior and provide new hope that the successful vitrification of natural organs as well as tissue engineered or clonally produced organ and tissue replacements can be achieved.  相似文献   

15.
Isolated perfused rabbit hearts were made globally ischemic for 2 hr, then reperfused. For 5 min before and after ischemia hearts were perfused with hypothermic (20 or 27 °C), hypoxic, substrate-free cardioplegic solutions, some of which contained 70 mM dimethyl sulfoxide. Postischemic ventricular pressure development, spontaneous heart rate, coronary flow, lactate dehydrogenase release, tissue Ca2+ content, and in vitro mitochondrial oxidative phosphorylation were used to evaluate the protective effects of the various solutions. Aside from the expected observations that cold cardioplegia lessens ischemic damage, we found that dimethyl sulfoxide gave no indication that it exacerbated ischemic damage or lessened the protection afforded by cardioplegia. We also found that, compared to values measured in comparable drug-free treated hearts, dimethyl sulfoxide significantly improved mitochondrial State 3 respiratory rates, respiratory control, and oxidative phosphorylation rates, and essentially prevented mitochondrial changes due to ischemia and reperfusion. We propose that dimethyl sulfoxide may act as a “scavenger” of cytotoxic free radicals, many of which are known to be generated by mitochondria during reoxygenation. Since hypoxia, ischemia, and reoxygenation are common accompaniments of most organ preservation protocols, we suggest that low concentrations of dimethyl sulfoxide might serve as a useful adjunct to organ preservation in the nonfrozen state, when cryoprotective concentrations are not needed.  相似文献   

16.
The major goal of hypothermic (4–8 °C) preservation of intact pancreases or isolated islets will be to provide sufficient time for HLA typing, cross matching, selection, and preparation of recipients—logistical efforts requiring 12–72 hr for clinical kidney transplantation, usually <48 hours. Some investigators have studied in vitro function of islets after cold storage, but the critical test of viability—permanent restoration of normoglycemia after transplantation to diabetic recipients—has been tested in only a few experiments. Reversal of hyperglycemia by syngeneic or autogenic transplants in diabetic animals has been achieved after CS of dispersed pancreatic tissue from neonatal rats in GIB media for ? 146 hr, adult dogs in TCM 199 for ?24 hr, and adult DL-ethionine-treated rats in RPMI 1640 for ?72 hr. In the neonatal rat donor model, intravenous glucose tolerance test (IVGTT) results were similar in recipients of fresh or stored islets; in the dog model, IVGTT test results were variable, but generally inferior in recipients of stored as compared to fresh islets; in the adult rat donor model, recipients of ?24-hr coldstorage islets had insulin and IVGTT K values similar to those of recipients of fresh islets, but the success rate progressively declined for CS times >24 hr. Various agents were added to the media, but the need or the optimal concentrations were not critically determined by using different recipes for different groups of recipients. Cold storage of intact pancreas autografts has been tested in dogs; simple electrolyte solutions are satisfactory for 24 hr, but only a silica gel-filtered plasma-based solution has been reliable for 48 hr. Pulsatile machine perfusion (PMP) of canine pancreas grafts for 24 hr has had a success rate similar to CS in some experiments and lower in others. PMP has been almost totally unreliable for >24 hr. Further refinements are needed if preservation of islets for >24 hr and pancreases for >48 hr are to be consistently successful. If current experimental techniques are effective for human islets or pancreases, however, these times are sufficient to complete the logistical maneuvers required before transplantation.  相似文献   

17.
Arginase, which catalyzes the cleavage of l-arginine to urea and ornithine, was detected in both soluble and particulate fractions of mouse epidermis. In a typical experiment, about 75 and 25% of the total arginase activity was associated with the soluble (100 000 × g supernatant) and the washed particulate fraction, respectively. Both soluble and particulate enzymes required the presence of divalent Mn2+ for activity. Arginase activity was increased by about 50% in the particulate fraction, but not in the soluble fraction, by preheating the fractions at either 50 or 55°C in the presence of 15 mM MnCl2. Enzyme activity in both fractions, in the absence of 15 mM MnCl2, dropped precipitously during heating. A comparison of the nature of arginases in the soluble and particulate fractions revealed similar Km values (13 mM) and pH optima (9.5) and identical heat denaturation curves. Application of 10 nmol of 12-O-tetradecanoylphorbol-13-acetate to mouse skin did not increase arginase activity in either fraction over a period of 24 h. In contrast, there was a large increase in ornithine decarboxylase activity in the soluble fraction 4.5 h after treatment. Mouse epidermal ornithine decarboxylase activity was much less than arginase activity and was predominantly localized in the soluble fraction. These results indicate that the normal level of arginase activity is not a limiting factor for the stimulation of polyamine biosynthesis by TPA. High arginase activity in mouse epidermis may play a role in providing ornithine for polyamine biosynthesis and in the production of glutamate and proline as well as in the production of keratinous proteins.  相似文献   

18.
Measurements of magnesium and calcium ion activities in solutions of the polyelectrolyte dextransulfate, with added sodium chloride or potassium chloride are presented. A two wavelength dye spectrophotometric method is used. Dextransulfate concentrations Cp (expressed as moles sulfate ion/litre) vary between 0.001 and 0.007, total ionic strengths between 0.005 and 0.08 mole/XXX. Divalent metal ion concentrations are varied between 0 and 1.2 Cp. The results for the metal ion activities are expressed in the form of parameters theta2 = C2/Cp (C(2bp) = bound divalent metal ion concentration) and K2 = theta2/(C2-C2b). For each divalent/univalent counterion pair the values obtained for theta2 and K2 as a function of C2,Cp, and ionic strength are compared to predictions of the "two variable theory" developed for these mixed counterion systems by Manning. This comparison shows that the observed decrease in theta2 with increasing ionic strength at fixed C2 and Cp is generally well predicted by the two variable theory. The extent of divalent ion binding at a given C2, Cp, and ionic strength is largest for the Ca/Na counterion combination, and lowest for the Mg/K combination.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号