首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 457 毫秒
1.
Vertebrate oocytes are naturally arrested at prophase of meiosis I for sustained periods of time before resuming meiosis in a process called oocyte maturation that prepares the egg for fertilization. Members of the constitutively active GPR3/6/12 family of G-protein coupled receptors represent important mediators of meiotic arrest. In the frog oocyte the GPR3/12 homolog GPRx (renamed GPR185) has been shown to sustain meiotic arrest by increasing intracellular cAMP levels through GαSβγ. Here we show that GPRx is enriched at the cell membrane (~80%), recycles through an endosomal compartment at steady state, and loses its ability to signal once trapped intracellularly. Progesterone-mediated oocyte maturation is associated with significant internalization of both endogenous and overexpressed GPRx. Furthermore, a GPRx mutant that does not internalize in response to progesterone is significantly more efficient than wild-type GPRx at blocking oocyte maturation. Collectively our results argue that internalization of the constitutively active GPRx is important to release oocyte meiotic arrest.  相似文献   

2.
Processes of oocyte maturation that may be affected by boron (B) deficiency were studied to potentially determine a possible biochemical role of B in the Xenopus laevis oocyte. More specifically, the Xenopus oocyte membrane progesterone receptor (OMPR) in B-deficient oocytes was characterized by evaluating progesterone affinity for the OMPR and OMPR responsiveness to progesterone stimulation. The responsiveness of B-deficient oocytes to microinjection of a purified oocyte cytoplasmic fraction (OCF) from B-adequate oocytes was also studied to evaluate which aspects of the maturation process were affected by B deficiency. Results suggested that B deficiency resulted in incomplete oocyte maturation and that maturation could not be induced by the administration of exogenous progesterone. Progesterone successfully induced germinal vesicle breakdown (GVBD) in oocytes from females fed a B-supplemented diet (+B) and females administered a traditional diet of beef liver and lung (B adequate). Addition of exogenous B to the -B oocytes increased the rate of progesterone-induced GVBD slightly. The B-deficient X. laevis oocytes were capable of undergoing GVBD when endogenously stimulated by microinjected purified B-adequate OCF. These results indicated that the inability of the B-deficient oocytes to undergo GVBD was not associated with the cytoplasmic induction process specifically, but possibly in the progesterone receptor or signal transduction pathways. Radio-binding studies found that progesterone binding to the B-deficient OPMR was greatly reduced compared to B-adequate or B-supplemented OMPR. Moreover, washout studies determined that progesterone binding to the OMPR in B-deficient oocytes was more transient than the B adequate or +B oocytes.  相似文献   

3.
In mammalian and amphibian oocytes, the meiotic arrest at the G2/M transition is dependent on cAMP regulation. Because genetic inactivation of a phosphodiesterase expressed in oocytes prevents reentry into the cell cycle, suggesting autonomous cAMP synthesis, we investigated the presence and properties of the G-protein-coupled receptors (GPCRs) in rodent oocytes. The pattern of expression was defined using three independent strategies, including microarray analysis of GV oocyte mRNAs, EST database scanning, and RT-PCR amplification with degenerated primers against transmembrane regions conserved in the GPCR superfamily. Clustering of the GPCR mRNAs from rat and mouse oocytes indicated the expression of the closely related Gpr3, Gpr12, and Edg3, which recognize sphingosine and its metabolites as ligands. Expression of these mRNAs was confirmed by RT-PCR with specific primers as well as by in situ hybridization. That these receptors are involved in the control of cAMP levels in oocytes was indicated by the finding that expression of the mRNA for Gpr3 and Gpr12 is downregulated in Pde3a-deficient oocytes, which have a chronic elevation of cAMP levels. Expression of GPR3 or GPR12 in Xenopus laevis oocytes prevented progesterone-induced meiotic maturation, whereas expression of FSHR had no effect. A block in spontaneous oocyte maturation was also induced when Gpr3 or Gpr12 mRNA was injected into mouse oocytes. Downregulation of GPR3 and GPR12 caused meiotic resumption in mouse and rat oocytes, respectively. However, ablation of the Gpr12 gene in the mouse did not cause a leaky meiotic arrest, suggesting compensation by Gpr3. Incubation of mouse oocytes with the GPR3/12 ligands SPC and S1P delayed spontaneous oocyte maturation. We propose that the cAMP levels required for maintaining meiotic arrest in mouse and rat oocytes are dependent on the expression of Gpr3 and/or Gpr12.  相似文献   

4.
Mammalian oocyte restores meiosis can be stimulated by follicle-stimulating hormone (FSH) under normal physiological conditions. G-protein coupled receptor 30 (GPR30), an non-classical estrogen membrane receptor, has been widely reported in teleost oocyte maturation. However, it remains unknown whether GPR30 involves the role of FSH in mammalian cumulus expansion and oocyte maturation. Here, we used mouse cumulus-oocyte complexes (COCs) as a model to investigate how FSH affects the in vitro maturation of mouse oocytes mediated by 17β-estradiol (E2)/GPR30 signaling. Our study reveals that FSH starts regulating mouse cumulus expansion precisely at 8 h in in vitro culture. ELISA measurement of E2 levels in culture medium revealed that FSH activated aromatase to promote E2 production in vitro in cultured mouse COCs. Moreover, the results of real-time quantitative PCR indicated that FSH-induced in vitro maturation of mouse oocytes was regulated by the estrogen-signaling pathway mediated by GPR30; FSH treatment markedly increased the mRNA expression of HAS2, PTGS2, and GREM1 in COCs. Exploration of the underlying mechanism suggested that E2 produced by mouse COCs regulated the phosphorylation level of extracellular signal-regulated kinase 1/2 (ERK1/2) through GPR30 and thereby promoted mouse cumulus-cell expansion and oocyte maturation. In conclusion, our study reveals that FSH induced estrogen production in mouse COCs through aromatase, and that aromatase/GPR30/ERK1/2 signaling is involved in FSH-induced cumulus expansion.  相似文献   

5.
Full-grown oocytes of amphibians respond in vitro to exogenous progesterone by undergoing physiological maturation (breakdown of the germinal vesicle (GVBD), meiosis, and acquisition of the capacity for activation). Both cytoplasm and “cytosol” from maturing oocytes have been shown to produce similar events when injected into unstimulated oocytes. This activity appeared within 4 hr after hormone treatment in Rana pipiens and Xenopus laevis and represents the earliest detectable, specific response of the oocyte yet observed, i.e., 6–8 hr before GVBD in Rana. Maturing oocytes retained activity as long as 100 hr after exposure to progesterone, and activity was also obtained from ovulated eggs and cleaving embryos. In addition, cytoplasm from Rana pipiens, Xenopus laevis, or Ambystoma mexicanum was effective in inducing maturation in oocytes of each other, indicating a lack of specificity.Recipient oocytes of Xenopus laevis consistently began to mature within 1.5–3 hr after injection of maturing cytoplasm, well before progesterone-treated controls. The timing of the response was closely related to the quantity of cytoplasm transferred, suggesting the presence of both a minimum and threshold level of cytoplasmic factor. Serial cytoplasmic transfer in Xenopus oocytes showed no significant loss of activity through 10 injections.  相似文献   

6.
Xenopus laevis oocytes have been incubated or microinjected with cholera and diphtheria holotoxins or their respective isolated fragments A and B. Effects on progesterone-induced maturation, protein synthesis and cAMP levels were observed. Xenopus laevis oocytes were highly susceptible to cholera toxin upon incubation as evidenced by the increase of cAMP (two-fold increase in cAMP with 0.1 nM cholera toxin) and the blockade of progesterone-induced maturation. When isolated cholera toxin fragments A or B were incubated with oocytes, no activity could be detected. However, microinjection of cholera toxin fragment A into oocyte was able to mimic the effects of incubated holotoxin. Microinjection of cholera toxin B fragment was only effective at very high concentrations, probably due to trace contaminations by the A fragment. On the other hand, Xenopus laevis oocytes were very resistant to diphtheria toxin action upon incubation, a result attributable to lack of specific membrane receptors since, after microinjection of diphtheria toxin A fragment into oocytes, inhibition of protein synthesis was demonstrated. By simultaneous microinjection of highly radioactive adenine-labelled NAD and diphtheria toxin fragment A into oocytes, radioactive ADP ribosylation of the elongation factor 2 (EF2) was observed. It is proposed that Xenopus laevis oocytes provide a new experimental approach for studying the mechanisms of action of microbial toxins.  相似文献   

7.
Oocytes are held in meiotic arrest in prophase I until ovulation, when gonadotropins trigger a subpopulation of oocytes to resume meiosis in a process termed "maturation." Meiotic arrest is maintained through a mechanism whereby constitutive cAMP production exceeds phosphodiesterase-mediated degradation, leading to elevated intracellular cAMP. Studies have implicated a constitutively activated Galpha(s)-coupled receptor, G protein-coupled receptor 3 (GPR3), as one of the molecules responsible for maintaining meiotic arrest in mouse oocytes. Here we characterized the signaling and functional properties of GPR3 using the more amenable model system of Xenopus laevis oocytes. We cloned the X. laevis isoform of GPR3 (XGPR3) from oocytes and showed that overexpressed XGPR3 elevated intraoocyte cAMP, in large part via Gbetagamma signaling. Overexpressed XGPR3 suppressed steroid-triggered kinase activation and maturation of isolated oocytes, as well as gonadotropin-induced maturation of follicle-enclosed oocytes. In contrast, depletion of XGPR3 using antisense oligodeoxynucleotides reduced intracellular cAMP levels and enhanced steroid- and gonadotropin-mediated oocyte maturation. Interestingly, collagenase treatment of Xenopus oocytes cleaved and inactivated cell surface XGPR3, which enhanced steroid-triggered oocyte maturation and activation of MAPK. In addition, human chorionic gonadotropin-treatment of follicle-enclosed oocytes triggered metalloproteinase-mediated cleavage of XGPR3 at the oocyte cell surface. Together, these results suggest that GPR3 moderates the oocyte response to maturation-promoting signals, and that gonadotropin-mediated activation of metalloproteinases may play a partial role in sensitizing oocytes for maturation by inactivating constitutive GPR3 signaling.  相似文献   

8.
Xenopus laevis Aurora-A is phosphorylated in vivo onto three amino acids: Ser53, Thr295 and Ser349. The activation of the kinase depends on its autophosphorylation on Thr295 within the T-loop. The phosphorylation of Ser53 by still unknown kinase(s) prevents its degradation. The present work focused on the regulation of Aurora-A function via Ser349 phosphorylation. Mutagenesis of Ser349 to alanine (S349A) had few impact in vitro on the capability of the kinase to autophosphorylate as well as on its activity. These data in addition to in gel kinase assays and site-specific proteolytic digestion experiments prove that Ser349 is clearly neither a primary autophosphorylation site, nor an autophosphorylation site depending on the priming phosphorylation of Thr295. Using specific antibodies, we also show that the phosphorylation of Aurora-A Ser349 is a physiological event during Xenopus oocyte maturation triggered by progesterone. A peak of phosphorylation paralleled the decrease of Aurora activity observed between meiosis I and II. In response to progesterone, X. laevis stage VI oocytes microinjected with the Aurora-A S349A mutant proceeded normally to germinal vesicle breakdown (GVBD), but degenerated rapidly soon after. Since phosphorylation of Ser349 is responsible for a decrease in kinase activity, our results suggest that a down-regulation of Aurora-A activity involving Ser349 phosphorylation is required in the process of maturation.  相似文献   

9.
Protein phosphorylation has been measured after injection of [32P]phosphate into oocytes of Xenopus laevis undergoing progesterone-induced meiotic maturation. As oocytes mature, there is a burst of nonyolk protein phosphorylation several hours after progesterone exposure and shortly before germinal vesicle breakdown (GVBD). This burst is not due to changes in the specific activity of the phosphate or ATP pool. Enucleated oocytes exposed to progesterone also experience the burst, indicating the cytoplasmic location of phosphoprotein formation. When an oocyte receives an injection of cytoplasm containing the maturation-promoting factor (MPF), a burst of protein phosphorylation occurs immediately, and GVBD occurs shortly thereafter, even in the presence of cycloheximide. Under a variety of conditions promoting or blocking maturation, oocytes which undergo GVBD are the only ones to have experienced the phosphorylation burst. The results suggest that the protein phosphorylation burst is a necessary step in the mechanism by which MPF promotes GVBD.  相似文献   

10.
11.
Treatment of Xenopus laevis follicles with 50–100 units/ml of human chorionic gonadotropin causes rapid stimulation of [14C]glucose uptake. Studies with these follicles showed that the stimulation of uptake occurred with a wide range of concentrations of [14C]glucose or its nonmetabolizable analog [14C]3-O-methylglucose. Approx. 70% of the glucose taken up in both hormone-treated and control cells becomes incorporated into glycogen within 1 h. The uptake of sugar by these follicles was also stimulated by bovine-luteinizing hormone—but not by folliclestimulating hormone, progesterone or insulin. Human chorionic gonadotropin stimulated sugar uptake by follicles containing medium-sized oocytes (stages 3,4 and 5 according to Dumont) which cannot be induced to undergo meiotic maturation by this hormone. After 4–6 h treatment of fully grown X. laevis follicles with either progesterone or human chorionic gonadotropin, glucose uptake suffers a drastic decrease to below basal levels. This inhibition of uptake is coincident with the breakdown of the germinal vesicle of the oocyte and is clearly related to meiotic maturation, since it is not observed with medium-sized follicles which cannot mature.  相似文献   

12.
Treatment of Xenopus laevis oocytes with cholesterol-depleting methyl-β-cyclodextrin (MeβCD) stimulates phosphorylation of mitogen-activated protein kinase (MAPK) and oocyte maturation, as reported previously [Sadler, S.E., Jacobs, N.D., 2004. Stimulation of Xenopus laevis oocyte maturation by methyl-β-cyclodextrin. Biol. Reprod. 70, 1685-1692.]. Here we report that treatment of oocytes with MeβCD increased levels of immunodetectable 39-kDa mos protein. The protein synthesis inhibitor, cycloheximide, blocked the appearance of Mos, blocked MeβCD-stimulated phosphorylation of MAPK, and inhibited MeβCD-induced oocyte maturation. These observations suggest that MeβCD activates the progesterone-signaling pathway. Chemical inhibition of steroid synthesis and mechanical removal of follicle cells were used to verify that MeβCD acts at the level of the oocyte and does not require production of steroid by surrounding follicle cells. Cortical Gαs is contained in low-density membrane; and treatment of oocytes with progesterone or MeβCD reduced immunodetectable levels of Gαs protein in cortices and increased internal levels of 45-kDa Gαs in cortical-free extracts. Dose-dependent increases in internal Gαs after treatment of oocytes with progesterone correlated with the steroid-induced maturation response, and the increase in internal Gαs after hormone treatment was comparable to the decrease in cortical Gαs. These results are consistent with a model in which release of Gαs from the plasma membrane is involved in activation of the progesterone-signaling pathway that leads to amphibian oocyte maturation.  相似文献   

13.
The injection of Xenopus laevis females with human chorionic gonadotropin (HCG) leads to ovulation (and maturation) of oocytes whose diameters are 1.2 mm or larger. However, when Xenopus oocytes are removed from their follicular investments by manual dissection and exposed to the steroid, progesterone, in vitro, they exhibit maturation down to about 0.90 mm in diameter with the majority larger than 1.0 mm showing a positive response. Within each female the larger of the oocytes undergo maturation earlier than smaller ones.The response of oocytes also was shown to depend on the length of time since females were last stimulated to ovulate. Similar-sized oocytes from recently ovulated (stimulated) females matured much faster than those of untreated, unstimulated females. Indeed, even the smaller oocytes from stimulated females often matured before the largest oocytes of females without previous HCG injection.The experiments demonstrate that the physiological state of an oocyte cannot be accurately deduced solely from its size nor response to gonadotropins; unresponsiveness presumably being due to inability of follicular elements to respond to the trophic hormones or transfer the stimulus to the oocyte via the appropriate steroid.  相似文献   

14.
Mixed and muscarinic cholinergic agonists (acetylcholine, carbamylcholine, methacholine, oxotremorine, and pilocarpine) accelerated in a dose-dependent manner the progesterone-induced maturation of Xenopus laevis oocytes. None of these agonists induced oocyte maturation in the absence of progesterone. The accelerating effect of cholinergic agonists was blocked in a dose-dependent manner by specific muscarinic antagonists (atropine and scopolamine) but not by specific nicotinic antagonists (d-tubocurarine and hexamethonium). The specific nicotinic agonist, dimethylphenylpiperazine, alone induced maturation in the absence of progesterone. The optimal promoting effect of acetylcholine was observed when oocytes were exposed to acetylcholine for 30 min, 5 min after the addition of progesterone, and was markedly better than when oocytes were exposed to acetylcholine throughout their incubation with progesterone. The effect of acetylcholine was observed in both follicle-enclosed and in defolliculated oocytes, indicating that follicular cells were not the target of the cholinergic drugs.  相似文献   

15.
A review of the data on the presence, localization, and supposed role of aquaporin water channels in oocytes of Xenopus laevis, oogenesis and maturation of teleosts Sparus auratus and Oncorhynchus mykiss, oogenesis and oocyte maturation of rats and mice, and spermatogenesis of several mammalians.  相似文献   

16.
The toxicity of boron has been understood for many years. However, limited data currently exist concerning the nutritional essentiality of B in chordates. Results from an ongoing research program evaluating the nutritional essentiality of B in the South African clawed frog, Xenopus laevis, found that X. laevis fed a low-B diet in a low-B culture media produced a substantially higher number of necrotic eggs and fertilized embryos than frogs fed a boron-sufficient diet. Markedly decreased embryo cell counts at mid-blastula transition and an increased frequency of abnormal gastrulation were also noted in embryos from adult frogs fed the B-deficient diet. By 96 h of development, none of the larvae collected from the B-deficient adults and maintained in low-boron culture media developed normally. Reproductive effects associated with B deficiency in female Xenopus included ovary atrophy, oocyte necrosis, and incomplete oocyte maturation. In males, a decrease in testis weight and sperm count was noted. These studies suggest that these adverse effects resulting from B deficiency could be found during gametogenesis, gamete maturation embryonic development, and larval maturation. The studies also confirmed that B deficiency was capable of interrupting the X. laevis life cycle. Additional studies evaluating the role of B in the thyroid axis and the oocyte plasma membrane progesterone receptor provide the first line of direct evidence for a biochemical role of boron in X. laevis. Combined together, this research program provides firm evidence that B is nutritionally essential in X. laevis.  相似文献   

17.
Although it is established that cAMP accumulation plays a pivotal role in preventing meiotic resumption in mammalian oocytes, the mechanisms controlling cAMP levels in the female gamete have remained elusive. Both production of cAMP via GPCRs/Gs/adenylyl cyclases endogenous to the oocyte as well as diffusion from the somatic compartment through gap junctions have been implicated in maintaining cAMP at levels that preclude maturation. Here we have used a genetic approach to investigate the different biochemical pathways contributing to cAMP accumulation and maturation in mouse oocytes. Because cAMP hydrolysis is greatly decreased and cAMP accumulates above a threshold, oocytes deficient in PDE3A do not resume meiosis in vitro or in vivo, resulting in complete female infertility. In vitro, inactivation of Gs or downregulation of the GPCR GPR3 causes meiotic resumption in the Pde3a null oocytes. Crossing of Pde3a/ mice with Gpr3/ mice causes partial recovery of female fertility. Unlike the complete meiotic block of the Pde3a null mice, oocyte maturation is restored in the double knockout, although it occurs prematurely as described for the Gpr3/ mouse. The increase in cAMP that follows PDE3A ablation is not detected in double mutant oocytes, confirming that GPR3 functions upstream of PDE3A in the regulation of oocyte cAMP. Metabolic coupling between oocytes and granulosa cells was not affected in follicles from the single or double mutant mice, suggesting that diffusion of cAMP is not prevented. Finally, simultaneous ablation of GPR12, an additional receptor expressed in the oocyte, does not modify the Gpr3/ phenotype. Taken together, these findings demonstrate that Gpr3 is epistatic to Pde3a and that fertility as well as meiotic arrest in the PDE3A-deficient oocyte is dependent on the activity of GPR3. These findings also suggest that cAMP diffusion through gap junctions or the activity of additional receptors is not sufficient by itself to maintain the meiotic arrest in the mouse oocyte.  相似文献   

18.
The molecular events regulating hormone-induced oocyte activation and meiotic maturation are probably best understood in Xenopus laevis. In X. laevis, progesterone activates the G2-arrested oocyte, induces entry into M phase of meiosis I (MI) and resumption of the meiotic cell cycles, and leads to the formation of a mature, fertilizable egg. Oocytes of Xenopus tropicalis offer several practical advantages over those of X. laevis, including faster and more synchronous meiotic cell cycle progression, less seasonal variability, and the availability of transgenic approaches. Previous work found several similarities in the pathways regulating oocyte maturation in the two species. Here, we report several additional ones that are conserved in X. tropicalis. (1). Injection of Mos mRNA into G2-arrested oocytes activates the MAP kinase cascade and induces the G2/MI transition. (2). Injection of the beta subunit of the kinase CK2 (a negative regulator of Mos and oocyte activation) delays the G2/MI transition. (3). Elevating PKA activity blocks progesterone-induced maturation; repressing PKA activity induces entry into MI in the absence of progesterone. (4). LF (anthrax lethal factor), which cleaves certain MAP kinase kinases, strongly reduces both the rate and extent of entry into MI. In contrast to the one previously reported major difference between oocytes of the two species, we find that injection of egg cytoplasm ("MPF activity") into G2-arrested X. tropicalis oocytes induces entry into meiosis I even when protein synthesis is blocked, just as it does in oocytes of X. laevis. These results indicate that much of what we have learned from studies of X. laevis oocytes holds for those of X. tropicalis, and suggest that X. tropicalis oocytes offer a good experimental system for investigating certain questions that require a rapid, synchronous progression through the G2/meiosis I transition.  相似文献   

19.
Fully grown Xenopus oocytes are physiologically arrested at the G2/prophase border of the first meiotic division. Addition in vitro of progesterone or insulin causes release of the G2/prophase block and stimulates meiotic cell division of the oocyte, leading to maturation of the oocyte into an unfertilized egg. The possibility that the products of polyphosphoinositide breakdown, diacylglycerol and inositol-1,4,5-trisphosphate (IP3-, are involved in oocyte maturation was investigated. Microinjection of IP3 into oocytes just prior to addition of progesterone or insulin accelerated the rate of germinal vesicle breakdown (GVBD) by up to 25%. Half-maximal acceleration occurred at an intracellular IP3 concentration of 1 microM. Treatment of oocytes with the diacylglycerol analog and tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA) induced GVBD in the absence of hormone. Half-maximal induction of GVBD occurred with 150 nM TPA and was blocked by pretreatment of oocytes with 10 nM cholera toxin. Microinjection of highly purified protein kinase C from rat brain into oocytes did not induce maturation but markedly accelerated the rate of insulin-induced oocyte maturation. However, injection of the enzyme had no effect on progesterone action. In oocytes with a basal intracellular pH below 7.6, TPA increased intracellular pH, but GVBD occurred with TPA in Na-substituted medium. Neomycin, a putative inhibitor of polyphosphoinositide breakdown, reversibly inhibited insulin- but not progesterone-induced maturation. Half-maximal inhibition occurred at 1.6 mM neomycin. These results indicate that protein kinase C is capable of regulating oocyte maturation in Xenopus.  相似文献   

20.
Cell cycle progression during oocyte maturation requires the strict temporal regulation of maternal mRNA translation. The intrinsic basis of this temporal control has not been fully elucidated but appears to involve distinct mRNA 3′ UTR regulatory elements. In this study, we identify a novel translational control sequence (TCS) that exerts repression of target mRNAs in immature oocytes of the frog, Xenopus laevis, and can direct early cytoplasmic polyadenylation and translational activation during oocyte maturation. The TCS is functionally distinct from the previously characterized Musashi/polyadenylation response element (PRE) and the cytoplasmic polyadenylation element (CPE). We report that TCS elements exert translational repression in both the Wee1 mRNA 3′ UTR and the pericentriolar material-1 (Pcm-1) mRNA 3′ UTR in immature oocytes. During oocyte maturation, TCS function directs the early translational activation of the Pcm-1 mRNA. By contrast, we demonstrate that CPE sequences flanking the TCS elements in the Wee1 3′ UTR suppress the ability of the TCS to direct early translational activation. Our results indicate that a functional hierarchy exists between these distinct 3′ UTR regulatory elements to control the timing of maternal mRNA translational activation during oocyte maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号