共查询到20条相似文献,搜索用时 3 毫秒
1.
Akong K Grevengoed EE Price MH McCartney BM Hayden MA DeNofrio JC Peifer M 《Developmental biology》2002,250(1):91-100
The regulation of signal transduction plays a key role in cell fate choices, and its disregulation contributes to oncogenesis. This duality is exemplified by the tumor suppressor APC. Originally identified for its role in colon tumors, APC family members were subsequently shown to negatively regulate Wnt signaling in both development and disease. The analysis of the normal roles of APC proteins is complicated by the presence of two APC family members in flies and mice. Previous work demonstrated that, in some tissues, single mutations in each gene have no effect, raising the question of whether there is functional overlap between the two APCs or whether APC-independent mechanisms of Wnt regulation exist. We addressed this by eliminating the function of both Drosophila APC genes simultaneously. We find that APC1 and APC2 play overlapping roles in regulating Wingless signaling in the embryonic epidermis and the imaginal discs. Surprisingly, APC1 function in embryos occurs at levels of expression nearly too low to detect. Further, the overlapping functions exist despite striking differences in the intracellular localization of the two APC family members. 相似文献
2.
3.
While studying the developmental functions of the Drosophila dopamine synthesis pathway genes, we noted interesting and unexpected mutant phenotypes in the developing trachea, a tubule network that has been studied as a model for branching morphogenesis. Specifically, Punch (Pu) and pale (ple) mutants with reduced dopamine synthesis show ectopic/aberrant migration, while Catecholamines up (Catsup) mutants that over-express dopamine show a characteristic loss of migration phenotype. We also demonstrate expression of Punch, Ple, Catsup and dopamine in tracheal cells. The dopamine pathway mutant phenotypes can be reproduced by pharmacological treatments of dopamine and a pathway inhibitor 3-iodotyrosine (3-IT), implicating dopamine as a direct mediator of the regulatory function. Furthermore, we show that these mutants genetically interact with components of the endocytic pathway, namely shibire/dynamin and awd/nm23, that promote endocytosis of the chemotactic signaling receptor Btl/FGFR. Consistent with the genetic results, the surface and total cellular levels of a Btl-GFP fusion protein in the tracheal cells and in cultured S2 cells are reduced upon dopamine treatment, and increased in the presence of 3-IT. Moreover, the transducer of Btl signaling, MAP kinase, is hyper-activated throughout the tracheal tube in the Pu mutant. Finally we show that dopamine regulates endocytosis via controlling the dynamin protein level. 相似文献
4.
5.
6.
Altenhein B Becker A Busold C Beckmann B Hoheisel JD Technau GM 《Developmental biology》2006,296(2):545-560
7.
8.
The Drosophila crooked neck (crn) gene encodes an unusual TPR-containing protein whose function is essential for embryonic development. Homology with other TPR-proteins involved in cell cycle control, initially led to the proposal that Crn might play a critical role in regulation of embryonic cell divisions. Here, we show that Crn does not have a cell cycle function in the embryo. By using specific antibodies we also show that the Crn protein is a nuclear protein which localizes in "speckles" which could correspond to preferential localization of several other splicing factors. Fractionation of nuclear extracts on sucrose gradients revealed Crn in a 900 kDa multiproteic complex together with snRNPs, suggesting that Crn participates in the assembly of the splicing machinery in vivo. 相似文献
9.
The tumor suppressor APC and its homologs, first identified for a role in colon cancer, negatively regulate Wnt signaling in both oncogenesis and normal development, and play Wnt-independent roles in cytoskeletal regulation. Both Drosophila and mammals have two APC family members. We further explored the functions of the Drosophila APCs using the larval brain as a model. We found that both proteins are expressed in the brain. APC2 has a highly dynamic, asymmetric localization through the larval neuroblast cell cycle relative to known mediators of embryonic neuroblast asymmetric divisions. Adherens junction proteins also are asymmetrically localized in neuroblasts. In addition they accumulate with APC2 and APC1 in nerves formed by axons of the progeny of each neuroblast-ganglion mother cell cluster. APC2 and APC1 localize to very different places when expressed in the larval brain: APC2 localizes to the cell cortex and APC1 to centrosomes and microtubules. Despite this, they play redundant roles in the brain; while each single mutant is normal, the zygotic double mutant has severely reduced numbers of larval neuroblasts. Our experiments suggest that this does not result from misregulation of Wg signaling, and thus may involve the cytoskeletal or adhesive roles of APC proteins. 相似文献
10.
Polycomb group (PcG) proteins are negative regulators that maintain the expression of homeotic genes and affect cell proliferation. Pleiohomeotic (Pho) is a unique PcG member with a DNA-binding zinc finger motif and was proposed to recruit other PcG proteins to form a complex. The pho null mutants exhibited several mutant phenotypes such as the transformation of antennae to mesothoracic legs. We examined the effects of pho on the identification of ventral appendages and proximo-distal axis formation during postembryogenesis. In the antennal disc of the pho mutant, Antennapedia (Antp), which is a selector gene in determining leg identity, was ectopically expressed. The homothorax (hth), dachshund (dac) and Distal-less (Dll) genes involved in proximo-distal axis formation were also abnormally expressed in both the antennal and leg discs of the pho mutant. The engrailed (en) gene, which affects the formation of the anterior-posterior axis, was also misexpressed in the anterior compartment of antennal and leg discs. These mutant phenotypes were enhanced in the mutant background of Posterior sex combs (Psc) and pleiohomeotic-like (phol), which are another PcG genes. These results suggest that pho functions in maintaining expression of genes involved in the formation of ventral appendages and the proximo-distal axis. 相似文献
11.
An important step in Drosophila neurogenesis is to establish the neural dorsoventral (DV) patterning. Here we describe how dpp loss-of- and gain-of-function mutation affects the homeobox-containing neural DV patterning genes expressed in the ventral neuroectoderm. Ventral nervous system defective (vnd), intermediate neuroblast defective (ind), muscle-specific homeobox (msh), and orthodenticle (otd) genes participate in development of the central nervous system and peripheral nervous system, and encode homeodomain proteins. otd and msh genes were ectopically expressed in dpp loss-of-function mutation, but vnd and ind were not affected. However, when dpp was ectopically expressed in the ventral neuroectoderm by rho-GAL4/UAS-dpp system, it caused the repression of vnd, and msh expressions in ventral and dorsal columns of the neuroectoderm, respectively, but not that of ind. The later expression pattern of otd was also restricted by Dpp. The expression pattern of msh, vnd and otd in dpp loss-of-function and gain-of-function mutation indicates that Dpp activity does not reach to the ventral midline and it works locally to establish the dorsal boundary of the ventral neuroectoderm. 相似文献
12.
Members of the RecQ family play critical roles in maintaining genome integrity. Mutations in human RecQL4 cause a rare genetic disorder, Rothmund-Thomson syndrome. Transgenic mice experiments showed that the RecQ4 null mutant causes embryonic lethality. Although biochemical evidence suggests that the Xenopus RecQ4 is required for the initiation of DNA replication in the oocyte extract, its biological functions during development remain to be elucidated. We present here our results in establishing the use of Drosophila as a model system to probe RecQ4 functions. Immunofluorescence experiments monitoring the cellular distribution of RecQ4 demonstrated that RecQ4 expression peaks during S phase, and RecQ4 is expressed only in tissues active in DNA replication, but not in quiescent cells. We have isolated Drosophila RecQ4 hypomorphic mutants, recqEP and recq423, which specifically reduce chorion gene amplification of follicle cells by 4-5 fold, resulting in thin and fragile eggshells, and female sterility. Quantitative analysis on amplification defects over a 14-kb domain in chorion gene cluster suggests that RecQ4 may have a specific function at or near the origin of replication. A null allele recq419 causes a failure in cell proliferation, decrease in DNA replication, chromosomal fragmentation, and lethality at the stage of first instar larvae. The mosaic analysis indicates that cell clones with homozygous recq419 fail to proliferate. These results indicate that RecQ4 is essential for viability and fertility, and is required for most aspects of DNA replication during development. 相似文献
13.
The teashirt (tsh) gene has dorso-ventral (DV) asymmetric functions in Drosophila eye development: promoting eye development in dorsal and suppressing eye development in ventral by Wingless mediated Homothorax (HTH) induction [Development 129 (2002) 4271]. We looked for DV spatial cues required by tsh for its asymmetric functions. The dorsal Iroquois-Complex (Iro-C) genes and Delta (Dl) are required and sufficient for the tsh dorsal functions. The ventral Serrate (Ser), but not fringe (fng) or Lobe (L), is required and sufficient for the tsh ventral function. We propose that DV asymmetric function of tsh represents a novel tier of DV pattern regulation, which takes place after the spatial expression patterns of early DV patterning genes are established in the eye. 相似文献
14.
The achaete-scute complex of Drosophila has been the focus of extensive genetic and developmental analysis. Of the four genes at this locus, achaete and scute appear to act redundantly to specify the peripheral nervous system. They share cis-regulatory elements and are co-expressed at the same locations. A mutation removing scute activity has been previously described; it causes a loss of some sensory bristles. Thus, when Scute is absent, the activity of achaete allows formation of the remaining bristles. However, all existing achaete mutants are rearrangements affecting regulatory sequences common to both achaete and scute. To determine the level of redundancy between the two genes, we have used a P element approach to generate a null allele of achaete, which leaves scute and all cis-regulatory elements intact. We find that the peripheral nervous system of achaete null mutant larvae and imagos lacks any detectable phenotype. However, when the levels of Scute are limiting, then some sensory organs are missing in achaete mutant flies. achaete and scute are thought to have arisen from a duplication event about 100 Myr ago. The difference between achaete and scute null flies is surprising and raises the question of the retention of both genes during the course of evolution. 相似文献
15.
During Drosophila embryogenesis, timely and orderly asymmetric cell divisions ensure the correct number of each cell type that make up the sensory organs of the larval PNS. We report a role of scraps, Drosophila Anillin, during these divisions. Anillin, a constitutive member of the contractile ring is essential for cytokinesis in Drosophila and vertebrates. During embryogenesis we find that zygotically transcribed scraps is required specifically for the unequal cell divisions, those in which cytokinesis occurs in an “off-centred” manner, of the pIIb and pIIIb neuronal precursor cells, but not the equal cell divisions of the lineage related precursor cells. Complementation and genetic rescue studies demonstrate this effect results from zygotic scraps and leads to polyploidy, ectopic mitosis, and loss of the neuronal precursor daughter cells. The net result of which is the formation of incomplete sense organs and embryonic lethality. 相似文献
16.
Raphael H. Rastetter Pascal Bernard James S. Palmer Anne-Amandine Chassot Huijun Chen Patrick S. Western Robert G. Ramsay Marie-Christine Chaboissier Dagmar Wilhelm 《Developmental biology》2014
The two main functions of the ovary are the production of oocytes, which allows the continuation of the species, and secretion of female sex hormones, which control many aspects of female development and physiology. Normal development of the ovaries during embryogenesis is critical for their function and the health of the individual in later life. Although the adult ovary has been investigated in great detail, we are only starting to understand the cellular and molecular biology of early ovarian development. Here we show that the adult stem cell marker Lgr5 is expressed in the cortical region of the fetal ovary and this expression is mutually exclusive to FOXL2. Strikingly, a third somatic cell population can be identified, marked by the expression of NR2F2, which is expressed in LGR5- and FOXL2 double-negative ovarian somatic cells. Together, these three marker genes label distinct ovarian somatic cell types. Using lineage tracing in mice, we show that Lgr5-positive cells give rise to adult cortical granulosa cells, which form the follicles of the definitive reserve. Moreover, LGR5 is required for correct timing of germ cell differentiation as evidenced by a delay of entry into meiosis in Lgr5 loss-of-function mutants, demonstrating a key role for LGR5 in the differentiation of pre-granulosa cells, which ensure the differentiation of oogonia, the formation of the definitive follicle reserve, and long-term female fertility. 相似文献
17.
18.
19.
Programmed cell death (PCD) plays a central role in the sculpting and maturation of developing epithelia. In adult tissue, PCD plays a further role in the prevention of malignancy though removal of damaged cells. Here, we report that mutations in klumpfuss result in an excess of support cells during maturation of the developing Drosophila pupal retina. These ectopic cells are the result of a partial and specific failure of apoptotic death during normal cell fate selection. klumpfuss is required and differentially expressed in the cells that choose the life or death cell fate. We also provide genetic and biochemical evidence that klumpfuss regulates this process through down-regulation of the Epidermal Growth Factor Receptor/dRas1 signaling pathway. Based on its sequence Klumpfuss is an EGR-class nuclear factor, and our results suggest a mechanism by which mutations in EGR-class factors such as Wilms' Tumor Suppressor-1 may result in oncogenic events such as pediatric kidney tumors. 相似文献