首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Targeted deletion of Tssk1 and 2 resulted in male chimeras which produced sperm/spermatogenic cells bearing the mutant allele, however this allele was never transmitted to offspring, indicating infertility due to haploinsufficiency. Morphological defects in chimeras included failure to form elongated spermatids, apoptosis of spermatocytes and spermatids, and the appearance of numerous round cells in the epididymal lumen. Characterization of TSSK2 and its interactions with the substrate, TSKS, were further investigated in human and mouse. The presence of both kinase and substrate in the testis was confirmed, while persistence of both proteins in spermatozoa was revealed for the first time. In vivo binding interactions between TSSK2 and TSKS were established through co-immunoprecipitation of TSSK2/TSKS complexes from both human sperm and mouse testis extracts. A role for the human TSKS N-terminus in enzyme binding was defined by deletion mapping. TSKS immunoprecipitated from both mouse testis and human sperm extracts was actively phosphorylated. Ser281 was identified as a phosphorylation site in mouse TSKS. These results confirm both TSSK 2 and TSKS persist in sperm, define the critical role of TSKS' N-terminus in enzyme interaction, identify Ser 281 as a TSKS phosphorylation site and indicate an indispensable role for TSSK 1 and 2 in spermiogenesis.  相似文献   

2.
Centrosome reduction during spermiogenesis has been studied using anti-gamma-tubulin and anti-centrin antibodies and electron microscopy in nonhuman primates. Rhesus spermatids possess apparently normal centrosomes comprising a pair of centrioles associated with gamma-tubulin and centrin. However, they do not nucleate detectable microtubules. The spermatids discard gamma-tubulin in the residual bodies during the spermiation stage. Mature sperm do not have any detectable gamma-tubulin. About half of the centrin associated with the distal centriole degenerates during spermiogenesis and the remainder is intimately bound to the centriolar microtubules. The mature sperm possess highly degenerated distal centrioles. The centriolar microtubules degenerate in the rostral region and the ventral side of the sperm. The study indicates that the centrosome is reduced during rhesus spermiogenesis, but not completely as in mice.  相似文献   

3.
Summary In a survey of sperm antigens in the rat, a new intra-acrosomal antigen was found using a monoclonal antibody MC41 raised against rat epididymal spermatozoa. The MC41 was immunoglobulin G1 and recognized spermatozoa from rat, mouse and hamster. Indirect immunofluorescence with MC41 specifically stained the crescent region of the anterior acrosome of the sperm head. Immuno-gold electron microscopy demonstrated that the antigen was localized within the acrosomal matrix. Immunoblot study showed that MC41 recognized a band of approximately 165000 dalton in the extract of rat sperm from the cauda epididymidis. Immunohistochemistry with MC41 demonstrated that the antigen was first detected in approximately step-2 spermatids, and distributed over the entire cytoplasmic region of spermatids from step 2 to early step 19. The head region became strongly stained in late step-19 spermatids and then in mature spermatozoa. Distinct immunostaining was not found in the developing acrosome of spermatids throughout spermiogenesis. These results suggest that the MC41 antigen is a unique intra-acrosomal antigen which is accumulated into the acrosome during the terminal step of spermiogenesis.  相似文献   

4.
Within the testicular cysts of the mussel Prisodon alatus are numerous somatic host cells described as Sertoli cells (SC), each containing a variable number of young spermatid morulae. Among them, several free spermatid morulae, spermatids, and spermatozoa were observed. Each free spermatid morula is surrounded by an external membrane. The early spermatids enclosed within the morulae have dense and homogeneous chromatin, and the cytoplasm occupies little space around the nucleus. Later, during spermiogenesis, the SC show lysis and disrupt to liberate the spermatid morulae. The membrane of the free morula is then disrupted, releasing the young spermatids. The SC disappear just after the appearance in the testis of a large number of free young spermatids. The nucleus of each free spermatid becomes gradually smaller and denser by the appearance of a granular pattern of condensed chromatin. During the maturation phase of the spermatids, the cytoplasm becomes more voluminous, and mitochondria and centrioles are more evident. Then, flagellogenesis occurs, and the nucleus gradually condenses into thicker strands. In the mature sperm, the apical zone has a disc-shaped acrosomal vesicle and the midpiece contains five mitochondria and two centrioles located at the same level. The flagellum has the common 9+2 microtubular pattern. The results are discussed with particular reference to Sertoli cells and clusters of spermatid morulae with those of species of closely related taxa in the bivalves. J. Morphol. 238:63–70, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Spermiogenesis is characterized by a profound morphological differentiation of the haploid spermatid into spermatozoa. The testis-specific serine/threonine kinases (TSSKs) comprise a family of post-meiotic kinases expressed in spermatids, are critical to spermiogenesis, and are required for male fertility in mammals. To explore the role of heat shock protein 90 (HSP90) in regulation of TSSKs, the stability and catalytic activity of epitope-tagged murine TSSKs were assessed in 293T and COS-7 cells. TSSK1, -2, -4, and -6 (small serine/threonine kinase) were all found to associate with HSP90, and pharmacological inhibition of HSP90 function using the highly specific drugs 17-AAG, SNX-5422, or NVP-AUY922 reduced TSSK protein levels in cells. The attenuation of HSP90 function abolished the catalytic activities of TSSK4 and -6 but did not significantly alter the specific activities of TSSK1 and -2. Inhibition of HSP90 resulted in increased TSSK ubiquitination and proteasomal degradation, indicating that HSP90 acts to control ubiquitin-mediated catabolism of the TSSKs. To study HSP90 and TSSKs in germ cells, a mouse primary spermatid culture model was developed and characterized. Using specific antibodies against murine TSSK2 and -6, it was demonstrated that HSP90 inhibition resulted in a marked decrease of the endogenous kinases in spermatids. Together, our findings demonstrate that HSP90 plays a broad and critical role in stabilization and activation of the TSSK family of protein kinases.  相似文献   

6.
Spermiogenesis in the rainbow trout (Salmo gairdneri)   总被引:2,自引:0,他引:2  
In an ultrastructural study on the spermiogenesis of the rainbow trout (Salmo gairdneri R.) four spermatogenetic stages were identified. In young round spermatids, the nuclear chromatin was first heterogeneous (euchromatin and heterochromatin). Subsequently, it became more homogeneous and started to condense in the form of coarse granules and fibers and then into fibrils associated in ribbon-like elements which eventually partly fused together. During early spermiogenesis, a juxtanuclear vacuole appeared in the area where the nuclear envelope was specialized due to condensation of material between the two envelopes and a slight accumulation of nuclear material. This area was finally located in the anterior part of spermatids and spermatozoa; it probably plays a role during fertilization. A flagellar rootlet appeared early in spermiogenesis; it may play a role in the attachment of the flagellum to the nucleus since it persisted until the centriolar complex was definitively fixed in the implantation fossa. The flagellum did not display a plasma membrane and was first located in the cytoplasm, but when it was later extruded from the cell, it acquired a membrane. The cytoplasm was rich in ribosomes (free or in small groups) but poor in membranous organelles. The few mitochondria polarized around the centriolar complex were finally organized into an annular mid-piece. The spermatids remained connected by intercellular bridges until the end of spermiogenesis. The complexity of trout spermiogenesis is intermediate between that in poecilids and that in carp and pike, which have very simple spermatozoa. The role of the material from the nucleus and the cytoplasm reaching the Sertoli cell in the control of spermatogenesis has been discussed.  相似文献   

7.
Centrosomes are composed of two centrioles surrounded by pericentriolar material (PCM). However, the sperm and the oocyte modify or lose their centrosomes. Consequently, how the zygote establishes its first centrosome, and in particular, the origin of the second zygotic centriole, is uncertain. Drosophila melanogaster spermatids contain a single centriole called the Giant Centriole (GC) and a Proximal centriole-like (PCL) structure whose function is unknown. We found that, like the centriole, the PCL loses its protein markers at the end of spermiogenesis. After fertilization, the first two centrioles are observed via the recruitment of the zygotic PCM proteins and are seen in asterless mutant embryos that cannot form centrioles. The zygote’s centriolar proteins label only the daughter centrioles of the first two centrioles. These observations demonstrate that the PCL is the origin for the second centriole in the Drosophila zygote and that a paternal centriole precursor, without centriolar proteins, is transmitted to the egg during fertilization.  相似文献   

8.
The characteristic tadpole shape of sperm is formed from round spermatids via spermiogenesis, a process which results in dramatic morphological changes in the final stage of spermatogenesis in the testis. Protein phosphorylation, as one of the most important post‐translational modifications, can regulate spermiogenesis; however, the phosphorylation events taking place during this process have not been systematically analyzed. In order to better understand the role of phosphorylation in spermiogenesis, large‐scale phosphoproteome profiling is performed using IMAC and TiO2 enrichment. In total, 13 835 phosphorylation sites, in 4196 phosphoproteins, are identified in purified mouse spermatids undergoing spermiogenesis in two biological replicates. Overall, 735 testis‐specific proteins are identified to be phosphorylated, and are expressed at high levels during spermiogenesis. Gene ontology analysis shows enrichment of the identified phosphoproteins in terms of histone modification, cilium organization, centrosome and the adherens junction. Further characterization of the kinase‐substrate phosphorylation network demonstrates enrichment of phosphorylation substrates related to the regulation of spermiogenesis. This global protein phosphorylation landscape of spermiogenesis shows wide phosphoregulation across a diverse range of processes during spermiogenesis and can help to further characterize the process of sperm generation. All MS data are available via ProteomeXchange with the identifier PXD011890.  相似文献   

9.
Ras, a member of the small G-protein family, regulates multiple signaling pathways in somatic cells. The objectives of the present study included the characterization and localization of Ras and the identification of its downstream effectors in hamster spermatozoa. Immunoblot analysis with a pan-Ras monoclonal antibody localized Ras to the particulate fraction of sonicated testicular and caput and cauda epididymal spermatozoa. However, Ras was present in both the particulate and soluble fractions of spermatocytes and round spermatids, suggesting that its membrane recruitment is completed during spermiogenesis. Immunoblots of plasma membrane fractions demonstrated that hamster spermatozoa express both N-Ras and K-Ras. Indirect immunofluorescence with pan-Ras antibody localized Ras to the flagellum. Immunoblot analysis of sperm plasma membrane fractions demonstrated the presence of phosphatidylinositol 3-kinase (PI3-kinase) and protein kinase C zeta (PKCzeta), the downstream targets of Ras, and coimmunoprecipitation analysis demonstrated their interaction with Ras. Inhibitors of PI3-kinase (wortmannin and 2-(4- morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) and PKCzeta (staurosporine) inhibited the hyperactivation of sperm motility during capacitation in a dose-dependent manner, indicating that both PI3-kinase and PKCzeta are associated with development of this motility pattern. The interaction of Ras with both PI3-kinase and PKCzeta suggests that Ras may regulate several signaling pathways in spermatozoa.  相似文献   

10.
Mammalian glucosamine 6-phosphate deaminase (GNPDA) was first detected in hamster spermatozoa. To further elucidate its role, we have cloned mouse GNPDA and produced a polyclonal rabbit anti-GNPDA antibody. This antibody recognized a 33 kDa protein in soluble extracts from mouse brain, liver, kidney, muscle, ovary, testis and sperm. Immunofluorescent analysis of the localization of GNPDA in male reproductive tissue revealed its presence in spermatids and in spermatozoa. In spermatids, GNPDA localized close to the developing acrosome vesicle and in spermatozoa close to the acrosomal region. Following the induction of the acrosome reaction, GNPDA fluorescence in spermatozoa was either reduced or GNPDA was absent. These data suggest that GNPDA might play a role in the acrosome reaction.  相似文献   

11.
It is widely accepted that mature mammalian oocytes are induced to resume meiosis by a sperm-borne oocyte-activating factor(s) (sperm factor, SF) immediately after normal fertilization or intracytoplasmic sperm injection. The SF is most likely a soluble factor that is localized within the cytoplasm of mature spermatozoa, but the exact stage at which it appears during spermatogenesis and its localization after oocyte activation is not fully understood, except in the mouse. First, we injected mature spermatozoa and spermatogenic cells from cynomolgus monkeys into mouse oocytes to assess their oocyte-activating capacity. More than 90% of mouse oocytes were activated after injection of monkey spermatozoa. Round spermatids and primary spermatocytes (late pachytene to diplotene) also activated oocytes (93% and 79%, respectively). Injection of monkey spermatozoa and spermatids induces intracellular Ca(2+) oscillations in a pattern similar to that seen following normal fertilization. Most spermatocytes did not produce typical intracellular Ca(2+) oscillations. Second, we transferred pronuclei or cytoplasts from mouse oocytes that had been activated by monkey spermatozoa or spermatids into intact mature mouse oocytes by electrofusion in order to examine the localization of the SF after pronuclear formation. Some of the SF was localized within the pronuclei, but some stayed in the ooplasm. This study demonstrated that spermatogenic cells of cynomolgus monkeys acquire oocyte-activating capacity at much earlier stages than those of mice, and that the monkey SF has a pronucleus-directing nature, although to a lesser extent than the mouse SF.  相似文献   

12.
The fate of the proximal centriole in passeridan birds is an area of controversy and relative lack of knowledge in avian spermatogenesis and spermatology. This study examines, for the first time, spatiotemporal changes in the centriolar complex in various phases of spermiogenesis in a passerine bird, the Masked weaver (Ploceus velatus). It also describes the configuration of the centriolar complex and the relationship between it and the granular body in both intra- and extra-testicular spermatozoa. It is shown that the proximal centriole is retained and attaches, at its free end, to the granular body of spermatids in every step of spermiogenesis, as well as in mature intra-testicular and post-testicular spermatozoa, including those in the lumen of the seminal glomus. As the centriolar complex, along with its attached granular body, approaches the nucleus in the early spermatid, the proximal centriole articulates with the distal centriole at an acute angle of about 45°, and thereafter, both centrioles, still maintaining this conformation, implant, by means of their articulating proximal ends, at the implantation fossa of the nucleus. In the mature spermatid and spermatozoon, the granular body winds itself helically around the centriolar complex in the neck/midpiece region of the cell, and, thus, becomes the granular helix. The significance of this observation must await future studies, including possible phylogenetic re-evaluation and classification of birds.  相似文献   

13.
In this study, we examined the localization and characteristics of an intra-acrosomal protein, acrin2 (MC41), during guinea pig spermiogenesis and post-testicular sperm maturation in the epididymis, using the monoclonal antibody MC41. Immunoelectron microscopy demonstrated not only a specific domain localization of acrin2 in the apical segment of the guinea pig sperm acrosome, but also its dynamic behavior according to the spermatid differentiation and passage through the epididymis, as follows: acrin2 was exclusively localized in the membrane of the endoplasmic reticulum of early-stage spermatids but was not detectable in the developing acrosome until spermatids reached the maturation phase. In the final stage of spermiogenesis, acrin2 became localized in the outer acrosomal membrane (OAM)/matrix-associated materials both in the small region posterior to the dorsal matrix and along the ventral margin of the acrosomal apical segment. The acrosomal location of acrin2 in caput epididymidal sperm was almost identical to that observed in the final step spermatids, but during maturation it became progressively more restricted in area until on distal cauda epididymidal sperm it remained only in the dorsal region. In Western blot analysis, the MC41 antibody recognized a 165-kDa protein in the mature sperm extract. Furthermore, it was demonstrated that molecular weight reduction of the protein occurred during sperm passage through the epididymis. These findings indicate that acrin2 changes progressively in both distribution and size during development and maturation of the acrosome.  相似文献   

14.
15.
Spermatozoa released from the seminiferous tubules are terminally differentiated cells with no known synthetic activity. Their components are synthesized in the spermatogenic cells during spermatogenesis. In this study, we report the characterization and immunolocalization of beta-glucuronidase in mouse testicular germ cells and spermatozoa. The enzyme is an exoglycohydrolase with dual localization, being present in lysosomes and endoplasmic reticulum of several mouse and rat tissues. The purified germ cell preparations (spermatocytes, round spermatids, and condensed/elongated spermatids) when assayed for beta-glucuronidase activity showed that the spermatocytes contained five times more enzyme activity per cell than the spermatids. Polyacrylamide gel electrophoresis, carried out under native and denaturing conditions, demonstrated that the germ cells express only the lysosomal form of the enzyme (pI 5.5-6.0) with a subunit molecular mass of 74 kDa. Immunocytochemical studies revealed a positive reaction in the Golgi membranes, Golgi-associated vesicles, and lysosomes of late spermatocytes (pachytene spermatocytes) and a stage-specific localization during spermiogenesis. The forming or formed acrosome of the elongated spermatids (stages 9-16) and epididymal spermatozoa was highly immunopositive. Comparison of immunoprecipitation curves and kinetic properties of the enzyme present in spermatocytes and spermatozoa revealed no major differences. Taken together, our results demonstrate that beta-glucuronidase activities present in the lysosomes of spermatocytes and the sperm acrosome are kinetically and immunologically similar.  相似文献   

16.
Calspermin and Ca(2+)-calmodulin-dependent protein kinase IV (CaMKIV) are two proteins encoded by the Camk4 gene. CaMKIV is found in multiple tissues, including brain, thymus, and testis, while calspermin is restricted to the testis. In the mouse testis, both proteins are expressed within elongating spermatids. We have recently shown that deletion of CaMKIV has no effect on calspermin expression but does impair spermiogenesis by disrupting the exchange of sperm basic nuclear proteins. The function of calspermin within the testis is unclear, although it has been speculated to play a role in binding and sequestering calmodulin during the development of the germ cell. To investigate the contribution of calspermin to spermatogenesis, we have used Cre/lox technology to specifically delete calspermin, while leaving kinase expression intact. We unexpectedly found that calspermin is not required for male fertility. We further demonstrate that CaMKIV expression and localization are unaffected by the absence of calspermin and that calspermin does not colocalize to the nuclear matrix with CaMKIV.  相似文献   

17.
Aarabi M  Yu Y  Xu W  Tse MY  Pang SC  Yi YJ  Sutovsky P  Oko R 《PloS one》2012,7(3):e33496
Phospholipase C zeta (PLCζ) is a candidate sperm-borne oocyte activating factor (SOAF) which has recently received attention as a potential biomarker of human male infertility. However, important SOAF attributes of PLCζ, including its developmental expression in mammalian spermiogenesis, its compartmentalization in sperm head perinuclear theca (PT) and its release into the ooplasm during fertilization have not been established and are addressed in this investigation. Different detergent extractions of sperm and head/tail fractions were compared for the presence of PLCζ by immunoblotting. In both human and mouse, the active isoform of PLCζ was detected in sperm fractions other than PT, where SOAF is expected to reside. Developmentally, PLCζ was incorporated as part of the acrosome during the Golgi phase of human and mouse spermiogenesis while diminishing gradually in the acrosome of elongated spermatids. Immunofluorescence localized PLCζ over the surface of the postacrosomal region of mouse and bull and head region of human spermatozoa leading us to examine its secretion in the epididymis. While previously thought to have strictly a testicular expression, PLCζ was found to be expressed and secreted by the epididymal epithelial cells explaining its presence on the sperm head surface. In vitro fertilization (IVF) revealed that PLCζ is no longer detectable after the acrosome reaction occurs on the surface of the zona pellucida and thus is not incorporated into the oocyte cytoplasm for activation. In summary, we show for the first time that PLCζ is compartmentalized as part of the acrosome early in human and mouse spermiogenesis and is secreted during sperm maturation in the epididymis. Most importantly, no evidence was found that PLCζ is incorporated into the detergent-resistant perinuclear theca fraction where SOAF resides.  相似文献   

18.
19.
Ultrastructural characters in spermiogenesis and spermatozoa are considered important tools to elucidate the phylogenetic relationships within the Platyhelminthes. In the Anoplocephalidae, ultrastructural data refer to the spermatozoon of 14 species, whereas data on spermiogenesis refer to only 7 species. The present study focused on the spermiogenesis and spermatozoon of the anoplocephalid cestode Mosgovoyia ctenoides, as revealed by transmission electron microscopy. Type IV spermiogenesis was detected, beginning with the formation of a differentiation zone containing 2 centrioles, with a centriolar adjunct and vestigial striated rootlets. Different forms of the latter character have been described in other anoplocephalids. This study supports spermiogenesis of type IV as the most frequent in the Anoplocephalidae and confirms the presence of a centriolar adjunct in yet another type IV spermiogenesis species. The spermatozoon of M. ctenoides possesses 1 axoneme of the 9+ '1' trepaxonematan type, 2 crestlike bodies, dense plates, and granules of electron-dense cytoplasmic material, nucleus, and twisted cortical microtubules. It was again confirmed that the presence of granular material and the absence of both a periaxonemal sheath and intracytoplasmic walls are constant characters in the spermatozoa of all the Anoplocephalinae.  相似文献   

20.
Nucleoside diphosphate (NDP) kinases, responsible for the synthesis of nucleoside triphosphates and produced by the nm23 genes, are involved in numerous regulatory processes associated with proliferation, development, and differentiation. Their possible role in providing the GTP/ATP required for sperm function is unknown. Testis biopsies and ejaculated sperm were examined by immunohistochemical and immunofluorescence microscopy using specific antibodies raised against Nm23-H5, specifically expressed in testis germinal cells and the ubiquitous NDP kinases A to D. Nm23-H5 was present in sperm extract, together with the ubiquitous A and B NDP kinases (but not the C and D isoforms) as shown by Western blotting. Nm23-H5 was located in the flagella of spermatids and spermatozoa, adjacent to the central pair and outer doublets of axonemal microtubules. High levels of NDP kinases A and B were observed at specific locations in postmeiotic germinal cells. NDP kinase A was transiently located in round spermatid nuclei and became asymmetrically distributed in the cytoplasm at the nuclear basal pole of elongating spermatids. The distribution of NDP kinase B was reminiscent of the microtubular structure of the manchette. In ejaculated spermatozoa, the proteins presented specific locations in the head and flagella. Nm23/NDP kinase isoforms may have specific functions in the phosphotransfer network involved in spermiogenesis and flagellar movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号