首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin D(3) receptor ablation alters mammary gland morphogenesis   总被引:5,自引:0,他引:5  
Postnatal mammary gland morphogenesis is achieved through coordination of signaling networks in both the epithelial and stromal cells of the developing gland. While the major proliferative hormones driving pubertal mammary gland development are estrogen and progesterone, studies in transgenic and knockout mice have successfully identified other steroid and peptide hormones that impact on mammary gland development. The vitamin D(3) receptor (VDR), whose ligand 1,25-dihydroxyvitamin D(3) is the biologically active form of vitamin D(3), has been implicated in control of differentiation, cell cycle and apoptosis of mammary cells in culture, but little is known about the physiological relevance of the vitamin D(3) endocrine system in the developing gland. In these studies, we report the expression of the VDR in epithelial cells of the terminal end bud and subtending ducts, in stromal cells and in a subset of lymphocytes within the lymph node. In the terminal end bud, a distinct gradient of VDR expression is observed, with weak VDR staining in proliferative populations and strong VDR staining in differentiated populations. The role of the VDR in ductal morphogenesis was examined in Vdr knockout mice fed high dietary Ca(2+) which normalizes fertility, serum estrogen and neonatal growth. Our results indicate that mammary glands from virgin Vdr knockout mice are heavier and exhibit enhanced growth, as evidenced by higher numbers of terminal end buds, greater ductal outgrowth and enhanced secondary branch points, compared with glands from age- and weight-matched wild-type mice. In addition, glands from Vdr knockout mice exhibit enhanced growth in response to exogenous estrogen and progesterone, both in vivo and in organ culture, compared with glands from wild-type mice. Our data provide the first in vivo evidence that 1,25-dihydroxyvitamin D(3) and the VDR impact on ductal elongation and branching morphogenesis during pubertal development of the mammary gland. Collectively, these results suggest that the vitamin D(3) signaling pathway participates in negative growth regulation of the mammary gland.  相似文献   

2.
Emerging data suggest that metastasis-associated protein 1 (MTA1) represses ligand-dependent transactivation functions of estrogen receptor-alpha in cultured breast cancer cells and that MTA1 is upregulated in human breast tumors. However, the role of MTA1 in tumorigenesis in a physiologically relevant animal system remains unknown. To reveal the role of MTA1 in mammary gland development, transgenic mice expressing MTA1 under the control of the mouse mammary tumor virus promoter long terminal repeat were generated. Unexpectedly, we found that mammary glands of these virgin transgenic mice exhibited extensive side branching and precocious differentiation because of increased proliferation of ductal and alveolar epithelial cells. Mammary glands of virgin transgenic mice resemble those from wild-type mice in mid-pregnancy and inappropriately express beta-casein, cyclin D1 and beta-catenin protein. Increased ductal growth was also observed in the glands of ovariectomized female mice, as well as of transgenic male mice. MTA1 dysregulation in mammary epithelium and cancer cells triggered downregulation of the progesterone receptor-B isoform and upregulation of the progesterone receptor-A isoform, resulting in an imbalance in the native ratio of progesterone receptor A and B isoforms. MTA1 transgene also increased the expression of progesterone receptor-A target genes Bcl-XL (Bcl2l1) and cyclin D1 in mammary gland of virgin mice, and, subsequently, produced a delayed involution. Remarkably, 30% of MTA1 transgenic females developed focal hyperplastic nodules, and about 7% exhibited mammary tumors within 18 months. These studies establish, for the first time, a potential role of MTA1 in mammary gland development and tumorigenesis. The underlying mechanism involves the upregulation of progesterone receptor A and its targets, Bcl-XL and cyclin D1.  相似文献   

3.
The cytokine-transforming growth factor beta1 (TGFB1) is implicated in development of the mammary gland through regulation of epithelial cell proliferation and differentiation during puberty and pregnancy. We compared mammary gland morphogenesis in virgin Tgfb1(+/+), Tgfb1(+/-), and Tgfb1(-/-) mice and transplanted Tgfb1(+/+) and Tgfb1(-/-) epithelium to determine the impact of TGFB1 deficiency on development. When mammary gland tissue was evaluated relative to the timing of puberty, invasion through the mammary fat pad of the ductal epithelium progressed similarly, irrespective of genotype, albeit fewer terminal end buds were observed in mammary glands from Tgfb1(-/-) mice. The terminal end buds appeared to be normal morphologically, and a comparable amount of epithelial proliferation was evident. When transplanted into wild-type recipients, however, Tgfb1(-/-) epithelium showed accelerated invasion compared with Tgfb1(+/+) epithelium. This suggests that the normal rate of ductal extension in Tgfb1(-/-) null mutant mice is the net result of impaired endocrine or paracrine support acting to limit the consequences of unrestrained epithelial growth. By adulthood, mammary glands in cycling virgin Tgfb1(-/-) mice were morphologically similar to those in Tgfb1(+/+) and Tgfb1(+/-) animals, with a normal branching pattern, and the tissue differentiated into early alveolar structures in the diestrous phase of the ovarian cycle. Transplanted mammary gland epithelium showed a similar extent of ductal branching and evidence of secretory differentiation of luminal cells in pregnancy. These results reveal two opposing actions of TGFB1 during pubertal mammary gland morphogenesis: autocrine inhibition of epithelial ductal growth, and endocrine or paracrine stimulation of epithelial ductal growth.  相似文献   

4.
P190A and p190B Rho GTPase activating proteins (GAPs) are essential genes that have distinct, but overlapping roles in the developing nervous system. Previous studies from our laboratory demonstrated that p190B is required for mammary gland morphogenesis, and we hypothesized that p190A might have a distinct role in the developing mammary gland. To test this hypothesis, we examined mammary gland development in p190A-deficient mice. P190A expression was detected by in situ hybridization in the developing E14.5 day embryonic mammary bud and within the ducts, terminal end buds (TEBs), and surrounding stroma of the developing virgin mammary gland. In contrast to previous results with p190B, examination of p190A heterozygous mammary glands demonstrated that p190A deficiency disrupted TEB morphology, but did not significantly delay ductal outgrowth indicating haploinsufficiency for TEB development. To examine the effects of homozygous deletion of p190A, embryonic mammary buds were rescued by transplantation into the cleared fat pads of SCID/Beige mice. Complete loss of p190A function inhibited ductal outgrowth in comparison to wildtype transplants (51% vs. 94% fat pad filled). In addition, the transplantation take rate of p190A deficient whole gland transplants from E18.5 embryos was significantly reduced compared to wildtype transplants (31% vs. 90%, respectively). These results suggest that p190A function in both the epithelium and stroma is required for mammary gland development. Immunostaining for p63 demonstrated that the myoepithelial cell layer is disrupted in the p190A deficient glands, which may result from the defective cell adhesion between the cap and body cell layers detected in the TEBs. The number of estrogen- and progesterone receptor-positive cells, as well as the expression levels of these receptors was increased in p190A deficient outgrowths. These data suggest that p190A is required in both the epithelial and stromal compartments for ductal outgrowth and that it may play a role in mammary epithelial cell differentiation.  相似文献   

5.
The level of circulating ovarian hormones (estrogen and progesterone) alone or in combination with pituitary hormones have a potent mitogenic impact in the normal mammary gland, and they also play a pivotal role in the development and progression of mammary carcinoma. The differential effects of hormones on the molecular components of cyclin-dependent kinase (cdk) complexes in mammary epithelium of the hormone-dependent ductal outgrowth line, EL11, and the hormone-independent alveolar outgrowth line, TM2L, were the focus of this study. The two outgrowth lines, which represent early stages in mammary hyperplasia, were compared with normal mammary gland at different hormonal conditions: control, hormone stimulated by pituitary isograft, and hormone depleted by ovariectomy. Hormonal stimulation by a pituitary isograft resulted in DNA synthesis and lobuloalveolar development of normal mammary ducts, DNA synthesis but no lobuloalveolar development in the EL11 ductal outgrowth, and no changes either in DNA synthesis or in lobuloalveolar morphology in the TM2L outgrowth. The levels of cdk4- and cyclin D1-associated kinase activities were correlated with cell proliferation in only the alveolar phenotypes (i.e., in only hormonally stimulated normal virgin gland and in alveolar mammary outgrowth), whereas cyclin D2-dependent kinase activity was correlated with cell proliferation in only the alveolar preneoplasia. p16(INK4a) and p21(Cip1) protein levels were decreased at the earliest stages of preneoplasia, i.e., at immortalization, and were independent from changes in cyclin D1, which occurred later in preneoplasia. Although all cdk inhibitors changed in concordance with hormonal status reflected by proliferation levels, p27(Kip1) was the only cdk inhibitor that was up-regulated at the earliest stages of preneoplasia and may have a unique role in blocking alveolar differentiation in response to the loss of one or more of the cell cycle-negative regulators. We hypothesize that up-regulation of p27(Kip1) prevents immortalized ductal outgrowths (EL11) from progressing to the neoplastic state, even under hormonal stimulation.  相似文献   

6.
Fibronectin (Fn) plays an important part in the branching morphogenesis of salivary gland, lung, and kidney. Here, we examine the effect of the conditional knockout of Fn in the mammary epithelium [FnMEp−/−] on postnatal mammary gland development, using Cre-loxP-mediated gene knockout technology. Our data show that Fn deletion causes a moderate retardation in outgrowth and branching of the ductal tree in 5-week-old mice. These defects are partially compensated in virgin 16-week-old mice. However, mammary glands consisting of Fn-deficient epithelial cells fail to undergo normal lobuloalveolar differentiation during pregnancy. The severity of lobuloalveolar impairment ranged from lobular hypoplasia to aplasia in some cases and was associated with the amount of Fn protein recovered from these glands. Decreased rates of mammary epithelial cell proliferation accounted for delayed ductal outgrowth in virgin and lack of alveologenesis in pregnant FnMEp−/− mice. Concomitant decreased expression of integrin β1 (Itgb1) and lack of autophosphorylation of focal adhesion kinase (Fak) suggest that this pathology might, at least in part, be mediated by disruption of the Fn/Itgb1/Fak signaling pathway.  相似文献   

7.
p190-B RhoGAP regulates mammary ductal morphogenesis   总被引:1,自引:0,他引:1  
Previous studies from our laboratory have demonstrated that p190-B RhoGAP (p190-B) is differentially expressed in the Cap cells of terminal end buds (TEBs) and poorly differentiated rodent mammary tumors. Based on these observations we hypothesized that p190-B might play an essential role in invasion of the TEBs into the surrounding fat pad during ductal morphogenesis. To test this hypothesis, mammary development was studied in p190-B-deficient mice. A haploinsufficiency phenotype was observed in p190-B heterozygous mice as indicated by decreased number and rate of ductal outgrowth(s) at 3, 4, and 5 wk of age when compared with their wild-type littermates. This appeared to result from decreased proliferation in the Cap cells of the TEBs, a phenotype remarkably similar to that observed previously in IGF-I receptor null mammary epithelium. Furthermore, decreased expression of insulin receptor substrates 1 and 2 were observed in TEBs of p190-B heterozygous mice. These findings are consistent with decreased IGF signaling observed previously in p190-B-/- mouse embryo fibroblasts. To further assess if this defect was cell autonomous or due to systemic endocrine effects, the mammary anlagen from p190-B+/+, p190-B+/-, and p190-B-/- mice was rescued by transplantation into the cleared fat pad of recipient Rag1-/- mice. Surprisingly, as opposed to 75-80% outgrowths observed using wild-type donor epithelium, only 40% of the heterozygous and none of the p190-B-/- epithelial transplants displayed any outgrowths. Together, these results suggest that p190-B regulates ductal morphogenesis, at least in part, by modulating the IGF signaling axis.  相似文献   

8.
Despite the fact that physiological evidence points to the existence of a functional Na-K-Cl cotransporter in the mammary gland, the molecular identity of this transport process remains unknown. We now show that the Na-K-Cl cotransporter isoform, NKCC1, is expressed in mammary tissue. Developmental profiling revealed that the level of NKCC1 protein was significantly influenced by the stage of mammary gland development, and immunolocalization studies demonstrated that NKCC1 was present on the basolateral membrane of mammary epithelial cells. To examine whether functional NKCC1 is required for mammary epithelial cell development, we used NKCC1 -/- mice. We demonstrate that NKCC1 -/- mammary epithelium exhibited a significant delay in ductal outgrowth and an increase in branching morphogenesis during virgin development. These effects were autonomous to the epithelium as assessed by mammary gland transplantation. Although the absence of NKCC1 had no apparent effect on gross mammary epithelial cell morphology during lactation, pups born to NKCC1 -/- mice failed to thrive. Finally, analysis of NKCC1 protein in mouse models that exhibit defects in mammary gland development demonstrate that high levels of NKCC1 protein are indicative of ductal epithelial cells, and the presence of NKCC1 protein is characteristic of mammary epithelial cell identity.  相似文献   

9.
We have studied the role of the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) in postnatal mammary gland morphogenesis. Based on its ability to negatively regulate cyclin/Cdk function, loss of p27 may result in unrestrained cellular proliferation. However, recent evidence about the stabilizing effect of p27 on cyclin D1-Cdk4 complexes suggests that p27 deficiency might recapitulate the hypoplastic mammary phenotype of cyclin D1-deficient animals. These hypotheses were investigated in postnatal p27-deficient (p27(-/-)), hemizygous (p27(+/)-), or wild-type (p27(+/+)) mammary glands. Mammary glands from p27(+/)- mice displayed increased ductal branching and proliferation with delayed postlactational involution. In contrast, p27(-/-) mammary glands or wild-type mammary fat pads reconstituted with p27(-/-) epithelium produced the opposite phenotype: hypoplasia, low proliferation, decreased ductal branching, impaired lobuloalveolar differentiation, and inability to lactate. The association of cyclin D1 with Cdk4, the kinase activity of Cdk4 against pRb in vitro, the nuclear localization of cyclin D1, and the stability of cyclin D1 were all severely impaired in p27(-/-) mammary epithelial cells compared with p27(+/+) and p27(+/-) mammary epithelial cells. Therefore, p27 is required for mammary gland development in a dose-dependent fashion and positively regulates cyclin D-Cdk4 function in the mammary gland.  相似文献   

10.
Members of the transforming growth factor-beta (TGF-beta) superfamily signal through heteromeric type I and type II serine/threonine kinase receptors. Transgenic mice that overexpress a dominant-negative mutation of the TGF-beta type II receptor (DNIIR) under the control of a metallothionein-derived promoter (MT-DNIIR) were used to determine the role of endogenous TGF-betas in the developing mammary gland. The expression of the dominant-negative receptor was induced with zinc and was primarily localized to the stroma underlying the ductal epithelium in the mammary glands of virgin transgenic mice from two separate mouse lines. In MT-DNIIR virgin females treated with zinc, there was an increase in lateral branching of the ductal epithelium. We tested the hypothesis that expression of the dominant-negative receptor may alter expression of genes that are expressed in the stroma and regulated by TGF-betas, potentially resulting in the increased lateral branching seen in the MT-DNIIR mammary glands. The expression of hepatocyte growth factor mRNA was increased in mammary glands from transgenic animals relative to the wild-type controls, suggesting that this factor may play a role in TGF-beta-mediated regulation of lateral branching. Loss of responsiveness to TGF-betas in the mammary stroma resulted in increased branching in mammary epithelium, suggesting that TGF-betas play an important role in the stromal-epithelial interactions required for branching morphogenesis.  相似文献   

11.
12.
The tumor suppressor gene, TP53, plays a major role in surveillance and repair of radiation-induced DNA damage. In multiple cell types, including mammary epithelial cells, abrogation of p53 (encoded by Trp53) function is associated with increased tumorigenesis. We examined gamma-irradiated BALB/c-Trp53(+/+) and -Trp53(-/-) female mice at five stages of post-natal mammary gland development to determine whether radiation-induced p53 activity is developmentally regulated. Our results show that p53-mediated responses are attenuated in glands from irradiated virgin and lactating mice, as measured by induction of p21/WAF1 (encoded by Cdkn1a) and apoptosis, while irradiated early- and mid-pregnancy glands exhibit robust p53 activity. There is a strong correlation between p53-mediated apoptosis and the degree of cellular proliferation, independent of the level of differentiation. In vivo, proliferation is intimately influenced by steroid hormones. To determine whether steroid hormones directly modulate p53 activity, whole organ cultures of mammary glands were induced to proliferate using estrogen plus progesterone or epidermal growth factor plus transforming growth factor-alpha and p53 responses to gamma-irradiation were measured. Regardless of mitogens used, proliferating mammary epithelial cells show comparable p53 responses to gamma-irradiation, including expression of nuclear p53 and p21/WAF1 and increased levels of apoptosis, compared to non-proliferating irradiated control cultures. Our study suggests that differences in radiation-induced p53 activity during post-natal mammary gland development are influenced by the proliferative state of the gland, and may be mediated indirectly by the mitogenic actions of steroid hormones in vivo.  相似文献   

13.
Progesterone and PR are mainly thought to affect tertiary ductal side branching and alveologenesis in late stage of mammary gland development. Here, we present evidence that they also play a role in early ductal development. This conclusion derived from our analysis of maspin heterozygous (Mp+/-) mice that showed defective ductal development at puberty. The defect was due to a reduced systemic level of progesterone. We show that treatment of Mp+/- mice with progesterone rescued the defect of ductal development. When both wild-type and Mp+/- mice were ovariectomized at 4 wk of age, treatment with progesterone alone can stimulate their ductal growth. In addition, treatment of wild-type mice with the progesterone inhibitor RU486 slowed ductal development in a dose-dependent manner. To confirm that progesterone receptor (PR) was required for progesterone action in ductal development at pubertal stage, we treated ovariectomized PR-deficient (PRKO) and wild-type mice with progesterone and examined ductal development at 7 wk of age. Whereas wild-type mammary glands displayed abundant ductal growth after progesterone treatment, there was a significant retardation of ductal growth in PRKO mice. Furthermore, we observed reduced ductal development in intact PRKO mice at 7 wk of age compared with that of wild-type mice. However, the defect was rescued at late stage of mammary development in PRKO mice. These data demonstrate that progesterone signaling, which is mediated by PR, plays an important role in early ductal development. In PRKO mice, a compensatory mechanism occurs that rescues the ductal defect at a late stage of mammary development.  相似文献   

14.
The Ron receptor tyrosine kinase is expressed in normal breast tissue and is overexpressed in approximately 50% of human breast cancers. Despite the recent studies on Ron in breast cancer, nothing is known about the importance of this protein during breast development. To investigate the functional significance of Ron in the normal mammary gland, we compared mammary gland development in wild-type mice to mice containing a targeted ablation of the tyrosine kinase (TK) signaling domain of Ron (TK−/−). Mammary glands from RonTK−/− mice exhibited accelerated pubertal development including significantly increased ductal extension and branching morphogenesis. While circulating levels of estrogen, progesterone, and overall rates of epithelial cell turnover were unchanged, significant increases in phosphorylated MAPK, which predominantly localized to the epithelium, were associated with increased branching morphogenesis. Additionally, purified RonTK−/− epithelial cells cultured ex vivo exhibited enhanced branching morphogenesis, which was reduced upon MAPK inhibition. Microarray analysis of pubertal RonTK−/− glands revealed 393 genes temporally impacted by Ron expression with significant changes observed in signaling networks regulating development, morphogenesis, differentiation, cell motility, and adhesion. In total, these studies represent the first evidence of a role for the Ron receptor tyrosine kinase as a critical negative regulator of mammary development.  相似文献   

15.
Persistence of the capacity for embryogenic morphogenesis in adult mammary epithelium was demonstrated by allowing it to interact with grafted embryonic mesenchyme in vivo. When 14-day embryonic mammary or salivary mesenchyme was transplanted in the mammary gland of syngeneic young adult virgin mice, organogenetic development of the mammary epithelial cells occurred responding to closely attached mesenchyme. An early change, within 2–4 days, that was observed equally in both types of the mesenchymes was proliferation of mammary epithelial cells in multiple layers resembling rudimental architecture. Subsequently, ductal branching occurred from the rudimental architecture by mesenchyme-dependent branching pattern, of mammary gland type with mammary mesenchyme and of salivary gland-like type with salivary mesenchyme. This developmental response did not require hormones secreted from ovaries since it was observed similarly in ovariectomized mice. The mammary epithelium at the lactating stage did not show such a potential to the transplanted salivary mesenchyme.  相似文献   

16.
17.
The ID family of helix-loop-helix proteins regulates cell proliferation and differentiation in many different developmental pathways, but the functions of ID4 in mammary development are unknown. We report that mouse Id4 is expressed in cap cells, basal cells and in a subset of luminal epithelial cells, and that its targeted deletion impairs ductal expansion and branching morphogenesis as well as cell proliferation induced by estrogen and/or progesterone. We discover that p38MAPK is activated in Id4-null mammary cells. p38MAPK is also activated following siRNA-mediated Id4 knockdown in transformed mammary cells. This p38MAPK activation is required for the reduced proliferation and increased apoptosis in Id4-ablated mammary glands. Therefore, ID4 promotes mammary gland development by suppressing p38MAPK activity.  相似文献   

18.
p130Cas adaptor protein regulates basic processes such as cell cycle control, survival and migration. p130Cas over-expression has been related to mammary gland transformation, however the in vivo consequences of p130Cas over-expression during mammary gland morphogenesis are not known. In ex vivo mammary explants from MMTV-p130Cas transgenic mice, we show that p130Cas impairs the functional interplay between Epidermal Growth Factor Receptor (EGFR) and Estrogen Receptor (ER) during mammary gland development. Indeed, we demonstrate that p130Cas over-expression upon the concomitant stimulation with EGF and estrogen (E2) severely impairs mammary morphogenesis giving rise to enlarged multicellular spherical structures with altered architecture and absence of the central lumen. These filled acinar structures are characterized by increased cell survival and proliferation and by a strong activation of Erk1/2 MAPKs and Akt. Interestingly, antagonizing the ER activity is sufficient to re-establish branching morphogenesis and normal Erk1/2 MAPK activity. Overall, these results indicate that high levels of p130Cas expression profoundly affect mammary morphogenesis by altering epithelial architecture, survival and unbalancing Erk1/2 MAPKs activation in response to growth factors and hormones. These results suggest that alteration of morphogenetic pathways due to p130Cas over-expression might prime mammary epithelium to tumorigenesis.  相似文献   

19.
20.
Tritium-labelled thymidine was injected 45 min before sacrifice into virgin female C3H/HeJ mice 7–23 weeks of age, as well as into 10-week-old mice which had been ovariectomized and treated daily with 1 μg of oestradiol-17β and/or 1 mg of progesterone. Autoradiographs were made of squash preparations of the mammary glands, stained by Feulgen's method. The following results were obtained: (1) During normal development of the gland, cells synthesizing DNA are abundant in terminal buds and virtually absent in duct epithelium. Hence ductal growth takes place by the addition of cells produced in the terminal end structures. (2) At 5–6 months, when mammary growth has ceased, a considerable number of cells synthesizing DNA can still be found in alveoli, though not in duct epithelium. Hence the alveolar cells constitute a renewal population in the adult virgin. Because they maintain the potentiality to divide, duct cells are a G0 population. (3) Ovariectomy results in arrest of DNA synthesis within 3–5 days. Both oestradiol and progesterone restore DNA synthesis in alveoli but only progesterone is able to induce DNA synthesis in duct epithelium, and the differentiation of terminal buds into alveoli. This finding provides an explanation for the resumed proliferation of duct cells in pregnancy. (4) The number of cells engaged in DNA synthesis varies considerably among identical structures within the same gland. This may be due either to synchrony of cell replication and/or to fluctuations of proliferative activity in the gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号