首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
G protein-induced trafficking of voltage-dependent calcium channels   总被引:4,自引:0,他引:4  
Calcium channels are well known targets for inhibition by G protein-coupled receptors, and multiple forms of inhibition have been described. Here we report a novel mechanism for G protein-mediated modulation of neuronal voltage-dependent calcium channels that involves the destabilization and subsequent removal of calcium channels from the plasma membrane. Imaging experiments in living sensory neurons show that, within seconds of receptor activation, calcium channels are cleared from the membrane and sequestered in clathrin-coated vesicles. Disruption of the L1-CAM-ankyrin B complex with the calcium channel mimics transmitter-induced trafficking of the channels, reduces calcium influx, and decreases exocytosis. Our results suggest that G protein-induced removal of plasma membrane calcium channels is a consequence of disrupting channel-cytoskeleton interactions and might represent a novel mechanism of presynaptic inhibition.  相似文献   

3.
We have recently identified farnesol, an intermediate in the mevalonate pathway, as a potent endogenous modulator and blocker of N-type calcium channels (Roullet, J. B., R. L. Spaetgens, T. Burlingame, and G. W. Zamponi. 1999. J. Biol. Chem. 274:25439-25446). Here, we investigate the action of structurally related compounds on various types of voltage-dependent Ca(2+) channels transiently expressed in human embryonic kidney cells. 1-Dodecanol, despite sharing the 12-carbon backbone and headgroup of farnesol, exhibited a significantly lower blocking affinity for N-type Ca(2+) channels. Among several additional 12-carbon compounds tested, dodecylamine (DDA) mediated the highest affinity inhibition of N-type channels, indicating that the functional headgroup is a critical determinant of blocking affinity. This inhibition was concentration-dependent and relatively non-discriminatory among N-, L-, P/Q-, and R-Ca(2+) channel subtypes. However, whereas L-type channels exhibited predominantly resting channel block, the non-L-type isoforms showed substantial rapid open channel block manifested by a speeding of the apparent time course of current decay and block of the inactivated state. Consistent with these findings, we observed significant frequency-dependence of block and dependence on external Ba(2+) concentration for N-type, but not L-type, channels. We also systematically investigated the drug structural requirements for N-type channel inhibition. Blocking affinity varied with carbon chain length and showed a clear maximum at C12 and C13, with shorter and longer molecules producing progressively weaker peak current block. Overall, our data indicate that aliphatic monoamines may constitute a novel class of potent inhibitors of voltage-dependent Ca(2+) channels, with block being governed by rigid structural requirements and channel-specific state dependencies.  相似文献   

4.
Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca++ depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca++ could bind the Nav1.1 C-terminal region with micromolar affinity.  相似文献   

5.
A dynamic positive feedback mechanism, known as 'facilitation', augments L-type calcium-ion currents (ICa) in response to increased intracellular Ca2+ concentrations. The Ca2+-binding protein calmodulin (CaM) has been implicated in facilitation, but the single-channel signature and the signalling events underlying Ca2+/CaM-dependent facilitation are unknown. Here we show that the Ca2+/CaM-dependent protein kinase II (CaMK) is necessary and possibly sufficient for ICa facilitation. CaMK induces a channel-gating mode that is characterized by frequent, long openings of L-type Ca2+ channels. We conclude that CaMK-mediated phosphorylation is an essential signalling event in triggering Ca2+/CaM-dependent ICa facilitation.  相似文献   

6.
7.
Calmodulin regulation (calmodulation) of the family of voltage-gated CaV1-2 channels comprises a prominent prototype for ion channel regulation, remarkable for its powerful Ca2+ sensing capabilities, deep in elegant mechanistic lessons, and rich in biological and therapeutic implications. This field thereby resides squarely at the epicenter of Ca2+ signaling biology, ion channel biophysics, and therapeutic advance. This review summarizes the historical development of ideas in this field, the scope and richly patterned organization of Ca2+ feedback behaviors encompassed by this system, and the long-standing challenges and recent developments in discerning a molecular basis for calmodulation. We conclude by highlighting the considerable synergy between mechanism, biological insight, and promising therapeutics.The ancient Ca2+ sensor protein calmodulin (CaM) has emerged as a pervasive modulator of ion channels (Saimi and Kung, 2002), manifesting remarkable Ca2+ sensing capabilities in this context (Dunlap, 2007; Tadross et al., 2008) and furnishing essential Ca2+ feedback in numerous biological settings (Alseikhan et al., 2002; Xu and Wu, 2005; Mahajan et al., 2008; Adams et al., 2010; Morotti et al., 2012). Such modulation was discovered via mutations in CaM that altered the motile behavior of Paramecium, stemming from blunted activation of Ca2+-dependent Na+ current or K+ current (Kink et al., 1990). Since then, numerous ion channels have been found to be modulated by CaM, as extensively reviewed (Budde et al., 2002; Saimi and Kung, 2002; Wei et al., 2003; Halling et al., 2006; Tan et al., 2011; Nyegaard et al., 2012). This paper focuses on the CaM regulation (calmodulation) of voltage-gated Ca2+ channels, which are extensively regulated by intracellular Ca2+ binding to CaM (Ca2+/CaM; Lee et al., 1999; Peterson et al., 1999; Zühlke et al., 1999; Haeseleer et al., 2000; DeMaria et al., 2001; Budde et al., 2002; Halling et al., 2006). Such feedback regulation by Ca2+/CaM demonstrates versatile functional capabilities, represents a prominent prototype for ion-channel modulation, and holds far-reaching biological consequences. These attributes contribute much to the standing of voltage-gated Ca2+ channels as the queen of ion channels, molecules that not only sculpt membrane electrical waveforms but also serve as gatekeepers of the ubiquitous second messenger Ca2+ (Yue, 2004).

Classic history of discovery

The earliest signs of Ca2+-dependent regulation of Ca2+ channels came from data showing that increased Ca2+ could accelerate the inactivation of Ca2+ currents in Paramecium (Brehm and Eckert, 1978), invertebrate neurons (Tillotson, 1979), and insect muscle (Ashcroft and Stanfield, 1981). These results gave birth to the concept of Ca2+-dependent inactivation (CDI), the then counterintuitive notion that entities other than transmembrane voltage could modulate the rapid gating of ion channels (Eckert and Tillotson, 1981).Methodological advances permitting routine isolation and recording of Ca2+ currents within vertebrate preparations clearly revealed the existence of CDI of cardiac L-type Ca2+ currents (carried by CaV1.2 channels) in both multicellular preparations (Kass and Sanguinetti, 1984; Mentrard et al., 1984) and isolated myocytes (Lee et al., 1985). Classic data illustrating CDI of cardiac L-type currents is shown in Fig. 1 (A–C). Fig. 1 A (Ca) shows Ca2+ current from frog cardiocytes, elicited by a test voltage pulse to +80 mV (Mentrard et al., 1984). CDI becomes apparent upon Ca2+ entry during a voltage prepulse to +80 mV (Fig. 1 B), which causes sharply attenuated Ca2+ current in a subsequent test pulse (diminished area of red shading). To exclude voltage depolarization itself as the cause of inactivation, a prepulse to +120 mV (Fig. 1 C) can be demonstrated to produce far less inactivation within a subsequent test-pulse current. Because this prepulse imposed strong depolarization, but diminished Ca2+ entry via decreased driving force, the reemergence of test Ca2+ current suggests that the strong inactivation evident in Fig. 1 B could be attributed to CDI. Data of this type specifies an inactivation mechanism that depends on voltage as a U-shaped function, now considered a hallmark of CDI (Eckert and Tillotson, 1981).Open in a separate windowFigure 1.Classic U-shaped signature of CDI. (A–C) Early voltage-clamp recordings from a multicellular preparation of frog atrial trabeculae cells demonstrates CDI of Ca2+ currents. All listed voltages are relative to resting potential ER (∼−80 mV) Adapted from Mentrard et al. (1984). (A) Ca2+ currents (shaded pink) evoked in response to an +80-mV depolarizing test pulse show robust inactivation. Fast capacitive transient was estimated by blocking these Ca2+ currents with 3 mM Co2+ solution (Co). Vertical bar corresponds to 0.5 µA of current; horizontal bar, 100 ms. (B) The Ca2+ current in response to the test pulse is sharply attenuated when preceded by an +80 mV prepulse. This reduction in current amplitude reflects the inactivation of Ca2+ channels. Format is as in A. (C) Further increase in the prepulse potential to +120 mV restores Ca2+ current amplitude (compare with B). Here, the diminished Ca2+ entry during the prepulse was insufficient to trigger CDI. The format is as in A. (D–F) Single channel recordings of L-type Ca2+ channels from adult rat ventricular myocytes also exhibit U-shaped dependence of Ca2+ channel inactivation. Adapted from Imredy and Yue (1994) with permission from Elsevier. (D) Depolarizing voltage pulse to +20 mV evokes representative elementary Ca2+ currents. Ensemble average currents are shown on the bottom. (E) When depolarizing pulse was preceded by +40 mV prepulse, the elementary Ca2+ currents are sparser and the first opening is delayed. This reduction in open probability parallels the sharp attenuation of macroscopic Ca2+ currents seen in B. The ensemble average is shown on the bottom. (F) Further increase in prepulse voltage to +120 mV led to a reversal of this gating pattern, once again highlighting the U-shaped dependence of CDI. Ensemble average is shown on the bottom.Still, the actual nature of effects of Ca2+ upon gating remained unclear. Fig. 1 (D–F) reproduces the profile of CDI at the single-molecule level (Yue et al., 1990; Imredy and Yue, 1992, 1994). Resolving data such as these is technically challenging, owing to the diminutive size of unitary Ca2+ currents (∼0.3 pA) and the sub-millisecond gating timescale involved. These data demonstrate the existence of U-shaped inactivation in the gating of a single cardiac L-type Ca2+ channel fluxing Ca2+, as present in an adult rat ventricular myocyte (Imredy and Yue, 1994). These results established that Ca2+ influx of a single channel suffices to trigger CDI, and demonstrated the clear correspondence of single-channel and multicellular behavior (Fig. 1). Thus, CDI emerged as a legitimate molecular-level modulatory process.

Advent of Ca2+ channel calmodulation

The Ca2+ sensor mediating Ca2+ regulation of Ca2+ channels has long been a matter of debate, with proposals of direct binding of Ca2+ to the channel complex (Standen and Stanfield, 1982; Plant et al., 1983; Eckert and Chad, 1984), and of Ca2+-dependent phosphorylation and/or dephosphorylation of channels (Chad and Eckert, 1986; Armstrong, D., C. Erxleben, D. Kalman, Y. Lai, A. Nairn, and P. Greengard. 1988. Abstracts of papers presented at the forty-second annual meeting of the Society of General Physiologists. Abstr. 20). The road toward identification of the actual Ca2+ sensor began with the cloning and expression of recombinant Ca2+ channels, thereby enabling structure–function studies (Snutch and Reiner, 1992). This phase of discovery was initiated by a bioinformatic observation (Babitch, 1990), pointing out that the carboxy terminus of voltage-gated Ca2+ channels contains a region with weak homology to an EF hand Ca2+-binding motif (Fig. 2 A, EF1). After the recognition of EF1, the existence of a second EF hand–like motif became apparent (Fig. 2 A, EF2). This led to chimeric channel analysis (de Leon et al., 1995), wherein segments of the carboxy termini of L-type (CaV1.2) and R-type (CaV2.3) Ca2+ channels were swapped. These two types of channels exhibit strong and weak CDI, respectively, under conditions of strong intracellular Ca2+ buffering (Liang et al., 2003), making them advantageous for chimeric analysis. Results from these experiments revealed that the proximal third of the carboxy terminus (Fig. 2 A, CI region) was important for CDI, and that EF1 of CaV1.2 channels was essential for the strong CDI in these channels (de Leon et al., 1995). One possible explanation was that EF1 might be the Ca2+ binding site for CDI postulated previously (Standen and Stanfield, 1982; Plant et al., 1983; Eckert and Chad, 1984). However, mutations within the Ca2+ binding loop of EF1 failed to eliminate CDI (Zhou et al., 1997; Peterson et al., 2000), focusing the search for the Ca2+ sensor elsewhere.Open in a separate windowFigure 2.Calmodulation: the ingredients and the flavors. (A) Channel diagram illustrates overall arrangement of structural landmarks critical for CDI. The Ca2+-inactivation (CI) region, spanning ∼160 residues of the channel carboxy terminus, is highly conserved across CaV1/2 channel families and is elemental for CDI. The proximal segment (PCI) of the CI region includes the dual vestigial EF hand (EF) segments (shaded purple and blue-green). The IQ domain, a canonical CaM binding motif critical for CDI, is located just downstream of the PCI segment. The NSCaTE element in the amino terminus of CaV1.2/1.3 channels is an N-lobe Ca2+/CaM effector site. The CBD element (gray) in the carboxy terminus of CaV2 channels is a CaM binding segment thought to be critical for CDI. (B) The table outlines functional bipartition of CaM in CaV channels and the corresponding spatial Ca2+ selectivities. In CaV1.2 and CaV1.3 channels, both the C-lobe and N-lobe of CaM enable fast CDI with local Ca2+ selectivity. Latent CDI of CaV1.4 channels is revealed upon deletion of an autoinhibitory domain in the distal carboxy terminus. Throughout the CaV2 channel family, the N-lobe of CaM evokes slow CDI with global Ca2+ spatial selectivity. In CaV2.1 channels, the C-lobe of CaM supports ultra-fast facilitation (CDF) with local Ca2+ selectivity. No C-lobe triggered modulation has been reported for CaV2.2 and CaV2.3 channels.Targets of CaM binding themselves often resemble CaM, a bilobed molecule with each lobe composed of two EF hands (Jarrett and Madhavan, 1991). The dual vestigial EF hands in the carboxy terminus of channels (Fig. 2 A) may be seen as resembling a lobe of CaM, which suggests that CaM itself might be the Ca2+ sensor for CDI. Initial studies exploring this notion, however, showed that pharmacological inhibition of CaM did not eliminate CDI of L-type Ca2+ channels (Imredy and Yue, 1994; Zühlke and Reuter, 1998). Nonetheless, deletions within the CaV1.2 channel CI region identified an IQ motif (Fig. 2 A) as a critical element in CDI (Zühlke and Reuter, 1998), and mutagenesis of this IQ domain weakens CDI (Qin et al., 1999). As IQ motifs often bind Ca2+-free CaM (apoCaM; Jurado et al., 1999), the possibility that CaM acts as a CDI sensor reemerged. Definitive evidence came with studies involving a Ca2+-insensitive mutant form of CaM (CaM1234), in which point mutations within all four EF hands eliminate Ca2+ binding (Xia et al., 1998). If “preassociation” of apoCaM with target molecules were a prerequisite for subsequent regulation by Ca2+ binding to this apoCaM, then CaM1234 could act as a dominant negative to silence regulation, as seen for small-conductance Ca2+-activated K channels (Xia et al., 1998). Indeed, when CaV1.2 channels were coexpressed with CaM1234 or its analogues, CDI was ablated or strongly suppressed (Peterson et al., 1999; Zühlke et al., 1999). Additionally, apoCaM was found to bind to the CaV1.2 CI region, with critical dependence upon the IQ segment (Erickson et al., 2001; Pitt et al., 2001; Erickson et al., 2003). In retrospect, apoCaM preassociation with CaV1.2 channels would sterically protect CaM from pharmacological effects (Dasgupta et al., 1989), rationalizing the prior insensitivity of CDI to such small-molecule perturbation. In all, these data firmly substantiated CaM as the sensor for CaV1.2 channel Ca2+ regulation.Initially, it was believed that only CaV1.2 L-type channels (Fig. 2 B) were subject to CaM-mediated Ca2+ regulation (Zamponi, 2003). However, this system of calmodulation was gradually recognized to pertain to most of the CaV1 and CaV2 (but not CaV3) branches of the CaV channel superfamily (Liang et al., 2003; Fig. 2 B). P-type (CaV2.1) channels were found to be Ca2+ regulated (Lee et al., 1999), and a Ca2+/CaM binding site downstream of the IQ element (CBD; Fig. 2 A) was argued to be important. In this initial study, no role for CaM preassociation was recognized, and no role for the IQ domain was found. Moreover, Ca2+ regulation of CaV2.1 channels manifests as a facilitation of current (Ca2+-dependent facilitation; CDF), followed by a slowly developing CDI. Thus, it appeared possible that the Ca2+ regulation of CaV2.1 channels might diverge mechanistically from that of CaV1.2 channels. However, apoCaM was later found to preassociate with CaV2.1 channels (Erickson et al., 2001), Ca2+-insensitive mutant CaM molecules were found to eliminate Ca2+ regulation in CaV2.1 channels (DeMaria et al., 2001; Lee et al., 2003), and the IQ domain was determined to be structurally essential for this regulation (DeMaria et al., 2001; Lee et al., 2003; Kim et al., 2008; Mori et al., 2008). That said, the role of the CBD segment remains contentious, with some studies still arguing for this segment’s importance in CDI (Lee et al., 2003). In contrast, deletion of the entire carboxy terminus after the IQ domain (including the CBD element) completely spared CDF and CDI of CaV2.1 channels (DeMaria et al., 2001; Chaudhuri et al., 2005). Overall, CaV2.1 and CaV1.2 channels appear to be Ca2+ regulated by a largely conserved scheme.Soon thereafter, calmodulation was established for the remaining members of the CaV2 class of channels (Fig. 2 B, CaV2.2 and CaV2.3), which indicates that this modulatory system pertains throughout the CaV1-2 channel superfamily (Liang et al., 2003). Strong CaM-mediated CDI was found in CaV1.3 channels (Xu and Lipscombe, 2001; Shen et al., 2006; Yang et al., 2006); a latent capacity for CaM-mediated CDI was observed in CaV1.4 channels (Singh et al., 2006; Wahl-Schott et al., 2006); and potential indications of CaM-mediated regulation of CaV1.1 channels have been described (Stroffekova, 2008, 2011).A few more nuanced points nonetheless merit attention. First, some types of calmodulation are insensitive to strong intracellular Ca2+ buffering (e.g., CaV1.2 CDI), whereas others are not (CaV2.3 CDI; Fig. 2 B). This contrasting sensitivity enables the use of chimeric channels under increased Ca2+ buffering to identify key structural determinants (de Leon et al., 1995), despite the existence of calmodulation across the channel superfamily. Second, the mechanisms underlying CDF in CaV1.2 channels remain mysterious, as the CDF of native channels of the heart is weak to start, and attenuated by blockade of Ca2+ release from neighboring ryanodine receptor channels (RYRs; Wu et al., 2001). Additionally, CDF of CaV1.2 channels is strongly manifest only in recombinant channels containing point mutations within the IQ domain, and only when they are expressed in frog oocytes (Zühlke et al., 2000). Curiously, CDF is not observed in recombinant CaV1.2 channels expressed in mammalian cell lines (Peterson et al., 1999). In contrast, CDI of CaV1.2 channels is strong and universally observed across experimental platforms. Third, Ca2+/CaM-dependent dephosphorylation by calcineurin was initially suggested as a mechanism for CDI of Ca2+ channels (Chad and Eckert, 1986); however, this proposition has remained controversial as previously reviewed (Budde et al., 2002). Recently, calcineurin was found to preassemble with the CaV1.2 channel complex through the scaffolding protein AKAP79/150 bound to the distal carboxy terminus of the channel (Oliveria et al., 2007). Furthermore, two additional maneuvers were reported to impede CDI of these channels (Oliveria et al., 2012): the overexpression of a mutant AKAP79/150 incapable of binding calcineurin, and inhibition of calcineurin activity. However, others have found that direct inhibition of calcineurin has no effect on the CDI of L-type channels within multiple neuronal preparations (Branchaw et al., 1997; Victor et al., 1997; Zeilhofer et al., 1999). Moreover, deletion of the entire distal carboxy terminus (including the AKAP79/150 binding segment) of CaV1.2 channels preserves strong CDI (de Leon et al., 1995; Erickson et al., 2001; Crump et al., 2013). Similarly, short variants of CaV1.3 channels lacking the AKAP harboring distal carboxy termini (Marshall et al., 2011) also fully support CDI (Xu and Lipscombe, 2001; Shen et al., 2006; Yang et al., 2006; Bock et al., 2011). Altogether, it may be that calcineurin and AKAP79/150 are indirect and context-dependent modulators of CDI, rather than direct effector molecules (Budde et al., 2002).

Functional bipartition of CaM and selectivity for local/global Ca2+ sources

The calmodulatory mechanism for Ca2+ channels supports remarkable forms of Ca2+ decoding. This feature echoes earlier discoveries of “functional bipartition” of CaM in Paramecium (Kink et al., 1990; Saimi and Kung, 2002). Here, “under-excitable” behavioral strains had mutations only in the N-lobe of CaM, whereas “over-excitable” strains had mutations only in the C-lobe. Thus, one lobe of CaM can mediate signaling to one set of functions, whereas the other lobe signals to an alternative set of operations. It was unclear, however, whether this bipartition extended to mammals. The requirement that Ca2+ regulation of mammalian Ca2+ channels requires apoCaM preassociation permitted direct exploration of this question. Coexpressing channels with “half mutant” CaM molecules (CaM12 and CaM34, where only C- or N-terminal lobes, respectively, bind Ca2+) revealed that the individual lobes of CaM can evoke distinct components of channel regulation (Fig. 2 B). In most CaV1 channels, the C-lobe induces a kinetically rapid phase of CDI, whereas the N-lobe yields a slower component (Peterson et al., 1999; Yang et al., 2006; Dick et al., 2008). For CaV1.2 channels, early studies that utilized high intracellular Ca2+ buffering found only minimal N-lobe–mediated CDI (Peterson et al., 1999). However, when interrogated under low intracellular Ca2+ buffering, slow but recognizable N-lobe–mediated CDI of CaV1.2 channels emerges (Dick et al., 2008; Simms et al., 2013). Most strikingly, in CaV2.1 channels, the lobes of CaM produce opposing polarities of regulation: the C-lobe of CaM triggers a kinetically rapid CDF, whereas the N-lobe evokes a slower CDI (DeMaria et al., 2001; Lee et al., 2003). CaV2.2 and CaV2.3 channels manifest CDI triggered mainly by the N-lobe of CaM (Liang et al., 2003). Whether this bipartition orchestrates divergent classes of behavior in higher-order animals remains an intriguing and open question (Wei et al., 2003).Beyond simply splitting the Ca2+ signal, however, the calmodulation of mammalian Ca2+ channels revealed that the lobes of CaM can selectively decode Ca2+ in different ways. Hints as to this capability came from the differential sensitivity of calmodulation in various channels to Ca2+ buffering. Processes evoked by the C-lobe of CaM are invariably insensitive to introduction of strong Ca2+ buffering, whereas N-lobe–mediated processes in CaV2 channels can be eliminated by the same maneuver. Strong buffering would only spare Ca2+ signals near the cytoplasmic mouth of channels where strong point-source Ca2+ influx would overwhelm buffer capacity (Neher, 1986; Stern, 1992). This argues that local Ca2+ influx through individual channels triggers C-lobe signaling; in other words, the C-lobe of CaM exhibits a “local Ca2+ selectivity.” In contrast, a spatially global elevation of Ca2+ (present in the absence of strong Ca2+ buffering) is required for N-lobe signaling of CaV2 channels (DeMaria et al., 2001; Lee et al., 2003; Liang et al., 2003); thus, the N-lobe in this context exhibits a “global selectivity.” The existence of global selectivity is notable, given that local Ca2+ influx yields far larger Ca2+ increases near a channel than does globally sourced Ca2+ (Tay et al., 2012). One exception to this pattern is the local Ca2+ selectivity of the N-lobe component of CDI in CaV1.2/1.3 channels (see two paragraphs below). Corroboration of spatial Ca2+ selectivity is provided by the ability of single CaV1.2 channels to undergo CDI (Fig. 1, D–F). By definition, only a local Ca2+ source is present in the single-channel configuration; thus, the presence of CDI in this context indicates local Ca2+ selectivity. Additionally, single-channel records of CaV2.1 channels exhibit CDF (driven by C-lobe), but not CDI (triggered by N-lobe; Chaudhuri et al., 2007), which is consistent with the proposed differential selectivities for this channel. Fig. 2 B summarizes the arrangement of spatial Ca2+ selectivities according to the lobes of CaM.The mechanisms underlying these contrasting spatial Ca2+ selectivities can be interpreted as emergent behaviors of a system in which a lobe of apoCaM must transiently detach from a preassociation site before binding Ca2+, and where a Ca2+-bound lobe of CaM must associate with a channel effector site to mediate regulation (Tadross et al., 2008). When the slow Ca2+-unbinding kinetics of the C-lobe of CaM are imposed on this scenario, local Ca2+ sensitivity invariably results. In contrast, when the rapid Ca2+-unbinding kinetics of the N-lobe are interfaced with this architecture, global Ca2+ selectivity arises if the channel preferentially binds apoCaM versus Ca2+/CaM, as in the case of CaV2 channels (Fig. 2 B). When the channel preferentially interacts with Ca2+/CaM, local Ca2+ selectivity emerges, as in the context of CaV1 channels (Fig. 2 B). The relative roles of the affinities and kinetics of Ca2+ binding to the two lobes of CaM in mediating local and global Ca2+ selectivities have been considered at length elsewhere (Tadross et al., 2008).As an explicit example of how spatial Ca2+ selectivity of N-lobe regulation is specified, we consider the effects of an N-terminal spatial Ca2+-transforming element (NSCaTE) present only on the amino terminus of CaV1.2/1.3 channels (Fig. 2 A). NSCaTE is a Ca2+/CaM binding site whose presence enhances the aggregate channel affinity for Ca2+/CaM over apoCaM (Ivanina et al., 2000; Dick et al., 2008), endowing the N-lobe component of CDI of these channels with a largely local Ca2+ selectivity of N-lobe CDI in these channels. Elimination of the NSCaTE site in these channels, which tilts channels toward a preference for apoCaM, then switches their N-lobe CDI to a global profile. Conversely, donation of NSCaTE to CaV2 channels, which causes channels to favor Ca2+/CaM binding, then endows their N-lobe CDI with local Ca2+ selectivity (Dick et al., 2008). In this manner, the presence of NSCaTE can tune the spatial Ca2+ selectivity of N-lobe–mediated channel regulation. This overall arrangement of CaM interactions with a target molecule could endow numerous other regulatory systems with spatial Ca2+ selectivity.

Molecular basis of calmodulation

Elucidating the arrangement of apoCaM and Ca2+/CaM on Ca2+ channels is fundamental for the field, given the biological influence of calmodulation, and the importance of this system as an ion-channel regulatory prototype (Dunlap, 2007). This critical task, however, remains an ongoing challenge, given the >2,000 amino acids comprising the main pore-forming α1 subunit alone, the ability of multiple peptide segments of the channel to bind CaM in vitro, and the formidable nature of obtaining atomic structures for these channels.The stoichiometry of CaM interaction with channels has been debated. Crystal structures of Ca2+/CaM complexed with portions of the carboxy tail CI region of CaV1.2 channels (Fallon et al., 2009; Kim et al., 2010) suggest that multiple CaM molecules may interact to produce the full spectrum of Ca2+ regulatory functions. Moreover, CaM can interact with multiple peptide segments of the channel (Ivanina et al., 2000; Tang et al., 2003; Zhou et al., 2005; Dick et al., 2008; Ben Johny et al., 2013). In contrast, covalent fusion of single CaM molecules to CaV1.2 channels suggests that only one CaM per channel suffices to elicit CDI (Mori et al., 2004). Moreover, live-cell FRET studies of the interactions between CaM and holochannels (CaV1.2) also point to a 1:1 CaM/channel ratio (Ben Johny et al., 2012). In the holochannel, the various CaM binding segments may be arranged in close proximity so as to allow the two lobes of CaM to preferentially interact with the distinct channel segments during Ca2+ regulation (Dick et al., 2008; Ben Johny et al., 2013). Recent biochemical studies of the NSCaTE element show that this segment preferentially interacts with a single lobe of CaM (N-lobe) at a time (Liu and Vogel, 2012). Furthermore, the NSCaTE element can interact also with Ca2+/CaM prebound to an IQ domain peptide (Taiakina et al., 2013). Thus, we favor the interpretation that only one CaM interacts within holochannels, although peptide fragments of Ca2+ channels may bind to multiple CaM molecules.The IQ domain (Fig. 3 A, blue circle) is critical for calmodulation. Mutations within this domain markedly modulate the Ca2+ regulation of CaV1.2 channels (Zühlke and Reuter, 1998; Qin et al., 1999; Zühlke et al., 1999, 2000; Erickson et al., 2003), CaV1.3 channels (Yang et al., 2006; Bazzazi et al., 2013; Ben Johny et al., 2013), CaV2.1 channels (DeMaria et al., 2001; Lee et al., 2003; Kim et al., 2008; Mori et al., 2008), and CaV2.2 and CaV2.3 channels (Liang et al., 2003). Furthermore, apoCaM preassociation with CaV1.2/1.3 channels requires the IQ domain (Erickson et al., 2001; Pitt et al., 2001; Erickson et al., 2003; Bazzazi et al., 2013; Ben Johny et al., 2013). Finally, Ca2+/CaM binds well to IQ-domain peptides of many CaV channels (Peterson et al., 1999; Zühlke et al., 1999; DeMaria et al., 2001; Pitt et al., 2001; Liang et al., 2003; Bazzazi et al., 2013; Ben Johny et al., 2013). All these results gave rise to the IQ-centric hypothesis shown in Fig. 3 A. Here, the IQ domain is important for both apoCaM preassociation (left) and Ca2+/CaM binding (effector configuration shown on the right). This IQ-centric paradigm has motivated efforts to resolve crystal structures of Ca2+/CaM complexed with IQ-domain peptides of various CaV1-2 channels (Fallon et al., 2005; Van Petegem et al., 2005; Kim et al., 2008; Mori et al., 2008), as shown in Fig. 3 (B and C). Throughout, the IQ peptide segment appears as an α-helical entity with N and C termini as labeled.Open in a separate windowFigure 3.Toward an atomic-level understanding of CDI. (A) IQ-centric view of calmodulation of CaV channels. In this mechanistic scheme, ApoCaM is preassociated with the IQ domain (blue). Upon Ca2+ binding, CaM rebinds the same IQ domain with a higher affinity, and subtle conformational rearrangements are presumed to trigger CaM-mediated channel regulation. (B, left) Crystal structure of CaV1.2 IQ domain peptide in complex with Ca2+/CaM (Protein Data Bank accession no. 2BE6). The IQ domain is colored blue. CaM is show in cyan (N-lobe, pale cyan; C-lobe, cyan). Ca2+ ions are depicted as yellow spheres. The key isoleucine residue (red) serves as a hydrophobic anchor for CaM. Ca2+/CaM adopts a parallel arrangement with the IQ domain in which the N-lobe binds closer to the amino terminus of the IQ domain and the C-lobe binds further downstream. (B, right) Crystal structure of Ca2+/CaM bound to mutant CaV1.2 IQ domain with alanines substituted for the key isoleucine-glutamine residues (accession no. 2F3Z). This double mutation abolishes CDI. Structurally, however, Ca2+/CaM hugs the mutant IQ domain in a similar conformation as to its interaction with the wild-type (left). (C) Crystal structure of Ca2+/CaM bound to CaV2.1 IQ domain (left, accession no. 3BXK; right, accession no. 3DVM). The IQ domain is shaded green, CaM in cyan. Ca2+/CaM was reported to bind to the CaV2.1 IQ domain in both parallel (left) and antiparallel (right) arrangements. The antiparallel arrangement in which the C-lobe of CaM binds upstream of IQ domain has led to speculation that CDF may result from this inverted polarity of Ca2+/CaM association. (D) Simplified configurations of the CaM/channel complex relevant for calmodulation (E, A, IC, IN, and ICN). In configuration E, channels lack preassociated CaM and therefore cannot undergo CDI. Configuration A corresponds to channels bound to apoCaM, and thus capable of undergoing robust CDI. Ca2+ binding to the C-lobe and N-lobe of CaM leads to the inactivated configurations IC and IN, respectively. Ca2+ binding to both lobes of CaM then yields configuration ICN, with both C and N lobes of CaM engaged toward CDI. This final transition may exhibit positive cooperativity as specified by the constant λ >> 1. Under endogenous levels of CaM, channels may reside in any of the five configurations. Strong coexpression of wild-type or mutant CaM restricts accessibility to various states. Reproduced with permission from Ben Johny et al., 2013.However, this viewpoint remains problematic in three regards. (1) The atomic structures of Ca2+/CaM bound to wild-type and mutant IQ peptides of CaV1.2 (Fig. 3 B) show that a central isoleucine (side chains explicitly shown) in the IQ element is deeply buried within the C-lobe of Ca2+/CaM (Van Petegem et al., 2005), and that alanine substitution at this site hardly changes structure (Fallon et al., 2005). Additionally, Ca2+/CaM dissociation constants for corresponding wild-type and mutant IQ peptides are nearly the same (Zühlke et al., 2000; Bazzazi et al., 2013). Why then would alanine substitution at this well-ensconced site influence the rest of the channel to blunt regulation (Fallon et al., 2005)? (2) For CaV1.2/1.3 channels, the N-lobe of Ca2+/CaM effector site appears to be an NSCaTE element (Fig. 3 A, oval) of the channel amino terminus (Dick et al., 2008; Tadross et al., 2008; Liu and Vogel, 2012), separate from the IQ element. (3) Crystal structures of Ca2+/CaM in complex with the IQ peptide of CaV2.1 channels show that CaM can adopt both a parallel (Mori et al., 2008) and an antiparallel configuration (Kim et al., 2008; Fig. 3 C, left and right, respectively). The apparent inversion in configuration of CaM binding to IQ domain between CaV1.2 and CaV2.1 has been proposed as a mechanism for the opposing polarity of Ca2+ regulation observed in the two channels (Kim et al., 2008; Minor and Findeisen, 2010). However, detailed structural analysis along with functional systematic alanine scanning mutagenesis and chimeric channel analysis argues that the C-lobe effector site resides at a site beyond the IQ module (Mori et al., 2008).A major concern with older IQ domain analyses is that the regulatory system was not considered conceptually as a whole, as shown in Fig. 3 D (drawn with specific reference to CaV1.3 channels; Ben Johny et al., 2013). Configuration E portrays channels lacking apoCaM. Such channels can open normally, but do not manifest CDI because Ca2+/CaM from bulk solution cannot efficiently access a channel in configuration E to induce CDI (Mori et al., 2004; Yang, P.S., M.X. Mori, E.A. Antony, M.R. Tadross, and D.T. Yue. 2007. Biophysical Journal abstracts issue. 1669-Plat; Liu et al., 2010; Findeisen et al., 2011). ApoCaM binding with configuration E gives rise to configuration A, where opening can also occur normally, but CDI can now take place. For CDI, Ca2+ binding to both lobes of CaM yields configuration ICN, which underlies a fully inactivated channel with strongly reduced opening. For intermediate configurations, Ca2+ binding only to the C-lobe brings about configuration IC, equivalent to a C-lobe inactivated channel; Ca2+ binding only to the N-lobe yields the N-lobe–inactivated arrangement (IN). Of particular importance, ensuing entry into ICN likely involves positively cooperative interactions specified by cooperativity factor λ >> 1.This scheme emphasizes several challenges for older analyses of the IQ domain, where CDI was mostly assessed with only endogenous CaM present. Results thus obtained would be ambiguous, because IQ-domain mutations could alter calmodulation via changes at multiple steps depicted in Fig. 3 D, whereas other interpretations largely attributed the effects to altered Ca2+/CaM binding with an IQ effector site. In contrast, IQ mutations could well weaken apoCaM preassociation and reduce CDI by favoring configuration E. Moreover, functional deficits caused by mutations that do attenuate interaction with one lobe of Ca2+/CaM may be masked by positively cooperative steps (λ in Fig. 3 D).To minimize these issues, CDI of CaV1.3 channels was recently characterized during strong coexpression with various mutant CaM molecules (Bazzazi et al., 2013; Ben Johny et al., 2013) as shown in Fig. 4 (A–C, top). For orientation, CDI of channels expressed with only endogenous CaM present is shown in the upper portion of Fig. 4 A. Strong CDI produces a rapid decay of whole-cell Ca2+ current (red trace), compared with the negligible decline of Ba2+ current (black trace). Because Ba2+ binds CaM poorly (Chao et al., 1984), the decline of Ca2+ versus Ba2+ current after 300 ms of depolarization quantifies CDI (CDI parameter plotted below in bar graphs). One can isolate the diamond-shaped subsystem lacking configuration E (Fig. 4 B, top) by leveraging mass action with strong coexpression of wild-type CaM (CaMWT). Further simplification of CDI was obtained by strongly coexpressing channels with CaM12 (Fig. 4 C, top), which empties configuration E by mass action, and forbids configurations IN and ICN. Thus, the isolated C-lobe component of CDI can be studied, with the signature rapid time course of current decay shown near the top of Fig. 4 C. Critically, this layout avoids interplay with cooperative λ steps in Fig. 3 D. Likewise, strongly coexpressing CaM34 focuses on the slower N-lobe form of CDI, with attendant simplifications.Open in a separate windowFigure 4.Residue-level roadmap for calmodulation of CaV1.3 channels. Systematic alanine scanning mutagenesis of the entire CI domain of CaV1.3 channels. (A) CDI of wild-type and mutant CaV1.3 channels recombinantly expressed in HEK293 cells was measured with only endogenous CaM present. CDI observed here reflects properties of the entire system (stick figure) diagrammed in Fig. 3 D. Exemplar whole-cell current shows robust CDI for wild-type (WT) CaV1.3, reflecting their high affinity for apoCaM. Here and throughout, the vertical bar pertains to 0.2 nA of Ca2+ current (black); the Ba2+ current (gray) has been scaled ∼3-fold downward to aid comparison of decay kinetics. Horizontal bar, 100 ms. CDI is measured as the fractional reduction of Ca2+ current in comparison to Ba2+ at 300 ms (Ben Johny et al., 2013). Bottom, bar graph summary of CDI for alanine substitutions for indicated residues. CDI for WT channels, blue-green vertical line. Alanine substitutions in both EF hand regions and IQ domain resulted in diminished CDI. (B) Overexpression of CaMWT isolates the behavior of the diamond-shaped subsystem. Such overexpression of CaMWT should rescue CDI for mutations that weakened apoCaM preassociation. For WT CaV1.3, exemplar current shows that CDI is unaltered, as expected for a channel with high affinity for apoCaM. Bottom, bar graph summary of CDI for various mutant channels with CaMWT overexpressed. Format is as in A. CDI is rescued for several mutations in the EF hand region (EF2) and the IQ domain, reflecting the preassociation of N-lobe and C-lobe of apoCaM. (C) Overexpression of CaM12 isolates C-lobe CDI. Exemplar currents for WT channels show the fast C-lobe form of CDI. Bottom, bar graph summary shows the footprint of C-lobe CDI. Mutants in both the first EF hand and the IQ domain disrupted the C-lobe CDI (see the LGF loci in the EF hand regions and TFL and IQD loci in the IQ domain). The format is as in A. (D) Overexpression of CaM34 isolates N-lobe CDI. N-lobe CDI was largely preserved by mutations in the CI region. Mutations that weakened N-lobe apoCaM preassociation exhibited enhanced N-lobe CDI (see EF2 segment). Reassuringly, alanine scanning mutagenesis of NSCaTE element resulted in specific disruption of N-lobe CDI of CaV1.3 channels (Tadross et al., 2008). Adapted with permission from Ben Johny et al. (2013) and Bazzazi et al. (2013).Accordingly, a new framework of CaM/channel configurations that underlie calmodulation could be deduced, as diagrammed in Fig. 5 (Ben Johny et al., 2013). For convenience, Fig. 4 compiles results from a systematic alanine scan covering the entire CI domain of the carboxyl tail of CaV1.3 channels (Bazzazi et al., 2013; Ben Johny et al., 2013), where substitution positions are denoted to the left of the bar graph in Fig. 4 A. The N-terminal end of the CI segment corresponds to the top of the graph, purple and blue-green regions indicate EF1 and EF2, and the lavender zone denotes the IQ domain. Electrophysiological characterization for each of the substitutions was performed for all the various subsystems (Fig. 4, A–D, top), and bar graphs plot the strength of CDI for the corresponding subsystems in each of the panels. The blue-green vertical lines reference the profile for wild-type channels. The results thus obtained were combined with CaM binding assays (not depicted) to identify meaningful structure–function correlations.Open in a separate windowFigure 5.Next-generation blueprint for CaM/CaBP regulation of CaV channels. (A) De novo molecular model of CaV1.3 CI region docked to apoCaM. The N-lobe of apoCaM is thought to preassociate with the PCI region (green), whereas the C-lobe binds to the IQ domain (blue). The NSCaTE segment (tan) is unoccupied. This model corresponds to configuration A in Fig. 3 D, where the channels are charged with an apoCaM and ready to undergo CDI. (B) Proposed model for the Ca2+ inactivated state of the channel. The N-lobe of Ca2+/CaM is shown binding to the NSCaTE segment based on a recent NMR structure (Protein Data Bank accession no. 2LQC). This configuration is believed to result in N-lobe CDI. The de novo molecular model shows C-lobe of Ca2+/CaM, the EF hand segment, and the IQ domain forming a tripartite complex resulting in C-lobe CDI. Overall, this model corresponds to the inactive configuration ICN in Fig. 3 D. (C) Proposed allosteric mechanism of CaBP action. CaBP and apoCaM may dually bind the CaV1 channel. However, CaBP may allosterically inhibit CDI of CaV1 channels by interacting with the NT, III-IV loop, or PCI segment, thereby preventing Ca2+/CaM from reaching its effector configuration. (A–C) Adapted with permission from Yang et al. (2014).Under the regimen in Fig. 4 A, where all configurations are potentially accessible, diminished CDI by alanine substitutions occurred not only in the IQ domain, but upstream in the EF hand regions (between LGF and TLF residues). The latter effects strongly suggested that something outside the IQ domain was essential. Some of these deficits in CDI could be attributed to weakening of apoCaM preassociation with channels, because overexpressing wild-type CaM to depopulate configuration E (in Fig. 4 B) substantially recovered many of these CDI deficits. Binding assays of apoCaM with various CI segments confirmed this interpretation (Bazzazi et al., 2013; Ben Johny et al., 2013).Turning to potential deficits relating to diminished Ca2+/CaM action through channel effector sites, Fig. 4 (C and D) separately interrogates the C-lobe and N-lobe components of CDI. Importantly, isolating the C- and N-lobe components minimizes masking of mutational effects by positive cooperativity, allowing CDI deficits to be more sensitively observed in this regimen. That said, Fig. 4 C displays C-lobe CDI deficits in the EF hand region (strongest for LGF substitution), as well as in the IQ domain (with the strongest effect upon substitution at the central isoleucine). These outcomes support a hypothesis where the Ca2+/CaM effector configuration for the C-lobe component of CDI involves both of these functional hotspots, as developed two paragraphs below. For the N-lobe component of CDI (Fig. 4 D), no appreciable deficits were observed, as would be expected if interaction with the channel NSCaTE element (in the channel amino terminus) serves as the effector element.Fig. 5 A displays a proposed configuration A for apoCaM interaction with the channel. This includes a homology model of the apoCaM C-lobe complexed with the IQ domain (blue), based on analogous NaV structures (Chagot and Chazin, 2011; Feldkamp et al., 2011). The portrayal of the apoCaM N-lobe incorporates ab initio structural prediction of the CI domain, with two vestigial EF hands (EF), and a protruding helix (preIQ subelement). The EF hand module (EF) resembles the structure of a homologous NaV segment (Chagot et al., 2009; Wang et al., 2012), and the preIQ helix resembles a helical segment observed in crystal structures of analogous CaV1.2 peptides (Fallon et al., 2009; Kim et al., 2010). The atomic structure of the apoCaM N-lobe (1CFD) was interfaced with shape-complementarity docking algorithms. Regarding the proposed interaction interface of the N-lobe with the channel EF domain, we note that alanine substitution therein produced a curious enhancement of N-lobe CDI seen with certain alanine substitutions, especially in the EF region (Fig. 4 D). This feature is interesting because weakening of channel interaction with the N-lobe of apoCaM would be predicted to strengthen CDI produced by the N-lobe of Ca2+/CaM (Tadross et al., 2008).Fig. 5 B displays a proposed arrangement for the Ca2+/CaM-bound configuration ICN. The N-lobe complex with NSCaTE is an NMR structure (Liu and Vogel, 2012). An alternative ab initio model of the PCI is computationally docked with the C-lobe of Ca2+/CaM (Protein Data Bank accession no. 3BXL) and IQ module, which together form a ternary complex. This ternary arrangement is consistent with the importance of both IQ and EF domains for C-lobe CDI (Fig. 4 C). Intriguingly the C-lobe configuration resembles a rather canonical CaM–peptide complex, where the channel EF module contributes a surrogate lobe of CaM. Importantly, assays of Ca2+/CaM binding to the IQ segment alone would correlate poorly with functional effects relating to the ternary complex, as experimental studies observe (Bazzazi et al., 2013; Ben Johny et al., 2013). Overall, the proposed framework in Fig. 5 (A and B) may aid future structural biology and structure–function work. In addition, this scheme of CaM exchange within its target molecule may generalize beyond the Ca2+ channel family.

Biological consequences and prospects for new disease therapies

The biological consequences of Ca2+ regulation by CaM promise to be wide ranging and immense. In the heart, elimination of CaV1.2 CDI by means of dominant-negative CaM elicits marked prolongation of ventricular action potential duration (APD), implicating CDI as a dominant control factor in specifying APD (Alseikhan et al., 2002; Mahajan et al., 2008). As APD is one of the main determinants of electrical stability and arrhythmias in the heart, pharmacological manipulation of such regulation looms as a future antiarrhythmic strategy (Mahajan et al., 2008; Anderson and Mohler, 2009). Most recently, genome-wide linkage analysis in humans has uncovered heritable and de novo CaM mutations as the probable cause of several cases of catecholaminergic polymorphic ventricular tachycardia (CPVT), with altered CaM-ryanodine receptor function implicated as a major contributing factor (Nyegaard et al., 2012). Whole-exome sequencing has revealed an association between three de novo missense CaM mutations and severe long-QT (LQT) syndrome with recurrent cardiac arrest (Crotti et al., 2013), quite plausibly acting via disruption of CaV1.2/1.3 channel CDI (Limpitikul et al., 2014).In brain, state-of-the-art analysis of genome-wide single-nucleotide polymorphisms (SNPs) has identified CaV channels as a major risk factor for several psychiatric disorders (Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013). More specifically to calmodulation, CaV1.3 channels constitute a prominent Ca2+ entry portal into pacemaking and oscillatory neurons (Bean, 2007), owing to the more negative voltages required to open these ion channels. These channels are subject to extensive alternative splicing (Hui et al., 1991; Xu and Lipscombe, 2001; Shen et al., 2006; Bock et al., 2011; Tan et al., 2011) and RNA editing (Huang et al., 2012) in the carboxy tail, in ways that strongly modulate the strength of CDI (Shen et al., 2006; Liu et al., 2010; Huang et al., 2012). This fine tuning of CDI appears to be important for circadian rhythms (Huang et al., 2012). From the specific perspective of disease, CaV1.3 channels contribute a substantial portion of Ca2+ entry into substantia nigral neurons (Bean, 2007; Chan et al., 2007; Puopolo et al., 2007; Guzman et al., 2009), which exhibit high-frequency pacemaking (Chan et al., 2007) that drives dopamine release important for movement control. Notably, loss of these neurons is intimately related to Parkinson’s disease, and Ca2+ disturbances and overload are critical to this neurodegeneration (Bezprozvanny, 2009; Surmeier and Sulzer, 2013). Accordingly, an attractive therapeutic possibility for Parkinson’s disease involves discovery of small molecules that selectively down-regulate the opening of CaV1.3 versus other closely related Ca2+ channels (Kang et al., 2012). Thus, understanding the mechanisms underlying the modulation of CaV1.3 CDI is crucial, particularly to furnish specific molecular interfaces as targets of rational screens for small-molecule modulators.The fundamental mechanism of action of a natural modulator of CaV1.3 CDI may be especially relevant. In particular, recent discoveries identify Ca2+-binding proteins (CaBPs), a family of CaM-like brain molecules (Haeseleer et al., 2000) that may also bind CaV channels and other targets (Yang et al., 2002; Kasri et al., 2004). Like CaM, CaBPs are bilobed, with each lobe containing two EF hand Ca2+ binding motifs (Haeseleer et al., 2000), and a recent crystal structure shows overall similarity to CaM (Findeisen and Minor, 2010). However, whereas all four EF hands bind Ca2+ in CaM, one lobe is nonfunctional in CaBPs. Coexpressing CaBPs with CaV1 channels eliminates their CDI, thereby potentially influencing diverse biological processes (Zhou et al., 2004; Yang et al., 2006). Some have argued that CaBPs may simply compete for apoCaM on channels (Lee et al., 2002; Findeisen et al., 2013; Oz et al., 2013). More recent data argue for a different mechanism (Fig. 5 C), in which CaBP and apoCaM can both preassociate with the channel (Yang et al., 2014). In particular, by binding to channel regions that overlap Ca2+/CaM effector loci, CaBPs may preemptively retard the ability of Ca2+/CaM to reach its effector configuration (Fig. 5 B), allowing low concentrations of CaBP molecules in the CNS to still exert functional effects in the presence of much higher CaM levels (Yang et al., 2014). If this scheme is correct, the basic mechanisms of CaBP action may have implications for drug discovery, in that small molecules that target channel interaction surfaces for CaBP and/or Ca2+/CaM may exert potent modulatory actions.In conclusion, this overview of the calmodulation of voltage-gated Ca2+ channels highlights an impressive synergy among elegant molecular regulatory mechanisms, vital biological functions, and pathogenesis and potential therapy. As such, this field promises considerable mystery, enrichment, and enlightenment in the years ahead.  相似文献   

8.
Chronic treatment of PC 12 cells with the 1,4-dihydropyridine Ca2+ channel antagonist nifedipine [5 x 10-8M/5 days] and the activator S Bay K 8644 [5 x 10-7 M/5 days] resulted in up- and down-regulation of 1,4-dihydropyridine binding site density by 29 and 24%, respectively, without change in affinity. These changes in binding site density represent functional changes as indicated by the corresponding changes in K+ depolarization-induced 45Ca2+ uptake and in whole cell currents carried by Ba2+ ions. This homologous regulation of voltage-dependent Ca2+ channels [VDCC] by potent and specific ligands parallels that observed for other classes of membrane receptors.  相似文献   

9.
10.
11.
Reserpine inhibited batrachotoxin-elicited sodium influx in guinea pig brain synaptoneurosomes with an IC50 of about 1 M. In the presence of brevetoxin the IC50 increased to about 80 M. Reserpine inhibited binding of batrachotoxinin-A [3H]benzoate ([3H]BTX-B) binding in a complex manner causing a partial inhibition from 0.001 to 0.08 M, then a rebound stimulation from 0.1 to 0.8 M, followed by complete inhibition by 80 M. The stimulation was prevented by the presence of brevetoxin; reserpine then smoothly inhibited binding with an IC50 of about 1 M. Reserpine at 1 M slightly reduced the off-rate of [3H]BTX-B binding measured in the presence of veratridine, while at a concentration of 50 M it enhanced the off-rate, presumably by an allosteric mechanism. Reserpine at 0.3–10 M elicited a partial inhibition of the binding of [3H]brevetoxin-3. The local anesthetic dibucaine had effects similar to reserpine: It partially inhibited binding of [3H]brevetoxin. The presence of brevetoxin reduced the potency of dibucaine as an inhibitor of batrachotoxin-elicited sodium influx from an IC50 of about 2 M to an IC50 of about 50 M. The results suggest that reserpine binds at both a local anesthetic site to cause allosteric inhibition of batrachotoxin-binding and action, but that it also binds to another site causing, like brevetoxin, an enhancement of batrachotoxin-binding and action. Local anesthetics also may bind to the brevetoxin site.  相似文献   

12.
13.
The effect of peroxynitrite (OONO-) on voltage-dependent Ca2+ channels (VDCCs) was examined by measuring [45Ca2+] influx into mouse cerebral cortical neurones. OONO- time- and dose-dependently increased [45Ca2+] influx and this increase was abolished by manganese (III) tetrakis (4-benzoic acid) porphyrin, a scavenger for OONO-. Inhibition of cyclic GMP (cGMP) formation did not alter the OONO(-)-induced [45Ca2+] influx. OONO-, as well as 30 mm KCl, significantly increased fluorescence intensity of cell-associated bis-(1,3-dibutylbarbituric acid) trimethine oxonol (bis-oxonol). Tetrodotoxin and membrane stabilizers such as lidocaine dose-dependently suppressed OONO(-)-induced [45Ca2+] influx. Although each of 1 microM nifedipine and 1 microM omega-agatoxin VIA (omega-ATX) significantly inhibited the OONO(-)-induced [45Ca2+] influx and the concomitant presence of these agents completely abolished the influx, 1 microM omega-conotoxin GVIA (omega-CTX) showed no effect on the influx. On the other hand, OONO- itself reduced 30 mM KCl-induced [45Ca2+] influx to the level of [45Ca2+] influx induced by OONO- alone, and the magnitude of this reduction was as same as that of KCl-induced [45Ca2+] influx by omega-CTX. These results indicate that OONO- increases [45Ca2+] influx into the neurones through opening P/Q- and L-type VDCCs subsequent to depolarization, and inhibits the influx through N-type VDCCs.  相似文献   

14.
Many metabotropic receptors in the nervous system act through signaling pathways that result in the inhibition of voltage-dependent calcium channels. Our previous findings showed that activation of seven-transmembrane receptors results in the internalization of calcium channels. This internalization takes place within a few seconds, raising the question of whether the endocytic machinery is in close proximity to the calcium channel to cause such rapid internalization. Here we show that voltage-dependent calcium channels are pre-associated with arrestin, a protein known to play a role in receptor trafficking. Upon GABAB receptor activation, receptors are recruited to the arrestin-channel complex and internalized. beta-Arrestin 1 selectively binds to the SNARE-binding region of the calcium channel. Peptides containing the arrestin-binding site of the channel disrupt agonist-induced channel internalization. Taken together these data suggest a novel neuronal role for arrestin.  相似文献   

15.
Calmodulin signaling via the IQ motif   总被引:21,自引:0,他引:21  
Bähler M  Rhoads A 《FEBS letters》2002,513(1):107-113
The IQ motif is widely distributed in both myosins and non-myosins and is quite common in the database that includes more than 900 Pfam entries. An examination of IQ motif-containing proteins that are known to bind calmodulin (CaM) indicates a wide diversity of biological functions that parallel the Ca2+-dependent targets. These proteins include a variety of neuronal growth proteins, myosins, voltage-operated channels, phosphatases, Ras exchange proteins, sperm surface proteins, a Ras Gap-like protein, spindle-associated proteins and several proteins in plants. The IQ motif occurs in some proteins with Ca2+-dependent CaM interaction where it may promote Ca2+-independent retention of CaM. The action of the IQ motif may result in complex signaling as observed for myosins and the L-type Ca2+ channels and is highly localized as required for sites of neuronal polarized growth and plasticity, fertilization, mitosis and cytoskeletal organization. The IQ motif associated with the unconventional myosins also promotes Ca2+ regulation of the vectorial movement of cellular constituents to these sites. Additional regulatory roles for this versatile motif seem likely.  相似文献   

16.
The objective of these studies is to identify and characterize Ca2+-transport systems that may be of potential importance in the action of Ca2+-mobilizing hormones in the adipocyte. Using the Ca2+-sensitive photoprotein, aequorin, [Ca2+]i was estimated to be 0.15 microM, assuming an intracellular [Mg2+] of 1 mM. Substitution of Na+ with choline+ caused a transient increase in [Ca2+]i which was inversely related to extracellular [Na+], consistent with operation of a mediated Na+-Ca2+ exchange system. The stoichiometry was 3Na+:Ca2+. Elevation of extracellular K+ caused an increase in [Ca2+]i that was blocked by the Ca2+ channel antagonist, diltiazem, by omitting extracellular Ca2+, or by substituting Sr2+ for Ca2+. These findings indicate the presence of an Na+-Ca2+ exchanger and voltage-sensitive Ca2+ channels in adipocytes.  相似文献   

17.
18.
Voltage-dependent G-protein inhibition of N-type calcium channels reduces presynaptic calcium entry, sharply attenuating neurotransmitter release. Studies in neurons demonstrate that G-proteins have multiple modulatory effects on N-type channels. The observed changes may reflect genuine complexity in G-protein action and/or the intricate interactions of multiple channels and receptors in neurons. Expression of recombinant M2-muscarinic receptors and N-type channels in HEK 293 cells allowed voltage-dependent inhibition to be studied in isolation. In this system, receptor-activated G-proteins had only one effect: a 10-fold increase in the time required for channels to first open following membrane depolarization. There were no changes in gating after the channel first opened, and unitary currents were not detectably altered by modulation. Despite its simplicity, this single change successfully accounts for the complex alterations in whole-cell current observed during G-protein inhibition in neurons.  相似文献   

19.
20.
Inactivation of Ca channels was examined in crab muscle fibres using the voltage-clamp method. A satisfactory suppression of outward currents was attempted by the use of K+ blocking agents: TEA, 4AP and Cs ions instead of K+ ions applied extracellularly. The inactivation of Ca current appeared as a bi-exponential process. The faster component had a mean value of the time constant of 50 ms while the second component inactivated at a tenfold slower rate. The extent of inactivation of the faster component increased as the Ca current itself increased in different experimental conditions. Inactivation decreased when ICa was reduced for large applied depolarizations. The time constant of the faster calcium component also depended on the calcium current. Thus the results suggested that Ca2+ entry leads to inactivation of one component of calcium current in crab muscle. Substitution of Ca2+ ions by Sr2+ or Ba2+ ruled out the hypothesis concerning an accumulation process which would explain the decrease of the inward current. The second slower component of Ca current was better described by a voltage-dependent mechanism and its rate was not modified in Ca2+ rich solution or when the inward current was carried by Sr2+ or Ba2+ ions. Thus in crab muscle fibres, inactivation is mediated by both calcium entry and a voltage-gated mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号