首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Young male Sprague-Dawley rats were induced to overeat (approximately 45%) by provision of a cafeteria (CAF) diet of palatable human foods. Normophagic rats fed a commercial chow or a semisynthetic diet served as controls. The CAF rats exhibited (a) the reduced food efficiency and the propranolol-inhibitable elevation in resting metabolic rate (resting VO2) that are indicative of a facultative diet-induced thermogenesis (DIT) by which excess energy gain is resisted, and (b) certain changes in brown adipose tissue (BAT) that are among those taken as evidence for BAT as the effector of DIT, e.g., increased protein content and increased mitochondrial binding of GDP. To assess directly and quantitatively the contribution by BAT to the elevation in VO2 (apparent DIT) of the CAF rats, BAT O2 consumption was determined (Fick principle) from measurements of tissue blood flow (microsphere method) and the arteriovenous difference in blood O2 across interscapular BAT (IBAT). To obtain the measurements, the animals were fitted under halothane anesthesia with vascular cannulas for intraventricular injection of microspheres and sampling of arterial blood and the venous effluent of IBAT. After recovery from anesthesia and rewarming to normal body temperature the animals were placed singly in a temperature-controlled metabolic chamber and the measurements, which also included determination of resting VO2, were made 1.5-2 h later about 11:30 h. As determined from measurements made at 28 degrees C (thermoneutrality) mean values of resting VO2 for the cannulated rats were unchanged from those of intact (unoperated) CAF or control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The characteristics of regional brown (BAT) and white adipose tissue (WAT) growth and of thermogenesis following experimental overfeeding were studied in groups of male Sprague-Dawley rats fed lab chow or cafeteria diets for 8 weeks postweaning. Regional BAT and WAT growth was determined by dissection and weighing, and thermogenesis was characterized by measurements of resting and norepinephrine (NE)-stimulated oxygen consumption, of serum thyroid hormone concentrations, and of 24-hour urinary NE excretion levels. Cafeteria feeding resulted in a 113% increase in total BAT, with the most prominent increases in the interscapular, thoracic, and perirenal regions. Retroperitoneal, epididymal, and omental WAT were significantly greater in cafeteria than in chow-fed rats. Resting oxygen consumption of cafeteria-fed rads increased by 10% and NE excretion by 64% compared to chow-fed controls, while serum T3 concentrations were nearly doubled in the cafeteria-fed rats. The thermogenic response to NE injection in cafeteria-fed rats was 102% of their resting levels, compared to a 51% increase in the chow-fed controls. The results indicate that increased BAT growth occurs in all primary BAT depots following cafeteria-feeding in rats, and that the greater BAT mass is qualitatively proportional to their greater capacity for non-shivering thermogenesis. Also, the increased NE excretion and greater serum T3 concentration are consistent with increased sympathetic and thyroidal activity and may in part explain the thermogenic response to diet in the rat.  相似文献   

3.
Brown adipose tissue thermogenesis and obesity   总被引:13,自引:0,他引:13  
  相似文献   

4.
T4 treatment results in an inactivation of brown adipose tissue (BAT) which has been attributed to a reduced need of thermoregulatory heat production. Since T3 formation in brown adipocytes is governed by a type II T4 5'-deiodinase which is inhibited by T4, we analyzed the possibility that results obtained by T4 treatment were due to a lack of T3 in the tissue. Hyperthyroidism was induced in adult rats by administration of T3 (50 micrograms/kg body weight daily s.c.). Euthyroid and hyperthyroid rats were maintained at 23 degrees C or exposed at 6 degrees C for 3 weeks. Hyperthyroid rats at 23 degrees C showed an increase in BAT mass and in DNA and total lipids contents; however, BAT thermogenic activity was depressed. BAT from cold-exposed hyperthyroid rats showed the same mass and DNA content than at 23 degrees C, but it showed an increase in thermogenic activity, this increase being lower than in cold-exposed euthyroid rats. We conclude that high levels of T3 in BAT do not stimulate the thermogenic activity of the tissue. On the contrary, they inhibit it in response to lower requirements of facultative thermogenesis, both at 23 degrees C and at 6 degrees C.  相似文献   

5.
6.
Brown adipose tissue thermogenesis: interdisciplinary studies   总被引:17,自引:0,他引:17  
J Himms-Hagen 《FASEB journal》1990,4(11):2890-2898
Energy expenditure for thermogenesis in brown adipose tissue (BAT) serves either to maintain body temperature in the cold or to waste food energy. It has roles in thermal balance and energy balance, and when defective, is usually associated with obesity. BAT can grow or atrophy; it is usually atrophied in obese animals. Control of BAT thermogenesis and growth is by the sympathetic nervous system, with integration of signals in the hypothalamus. Sensory nerves may also be involved. Understanding the control of growth and differentiation of BAT is important for discovering how to reactivate it is obesity. Studies on control of gene expression in BAT are concentrating on thermogenically important components such as the uncoupling protein (which allows BAT mitochondria to operate in a thermogenic uncoupled mode), lipoprotein lipase (which allows BAT to compete with white adipose tissue for dietary lipid), and thyroxine 5'-deiodinase (which allows endogenous triiodothyronine generation, part of the control of differentiation and growth of BAT). Differentiation of BAT cell precursors in culture has recently been achieved. BAT is present in adult humans and some anti-obesity drugs are targeted to stimulation of BAT thermogenesis. However, extrapolation to humans of results of studies of BAT requires the development of novel approaches to the noninvasive assessment of amount and function of human BAT.  相似文献   

7.
8.
Feeding adult male rats a palatable cafeteria diet stimulated energy intake and expenditure but also raised body weight and energy gains. Bilateral adrenalectomy (ADX) had little effect on stock-fed animals, but prevented the development of obesity in cafeteria-fed rats by depressing food intake and energetic efficiency. Adrenalectomy also markedly increased the thermogenic activity of brown adipose tissue, and depressed insulin levels, particularly in the cafeteria group.  相似文献   

9.
Heat-acclimated rats show lighter IBAT deposit with different gross composition and lower GDP-binding than controls at thermoneutrality. A thermal disactivation of the tissue is then inferred. Cafeteria regime increased IBAT mass and GDP-binding when offered to rats at a thermoneutral ambient temperature. These results indicate that BAT thermogenesis at thermoneutrality is not the lowest one of the tissue and that diet-induced thermogenesis can take place even at thermoneutrality.  相似文献   

10.
11.
Hypocaloric diet feeding reduced the mitochondrial protein content and whole tissue GDP-binding in interscapular brown adipose tissue from both virgin and lactating rats. A reduction in brown fat lipoprotein lipase activity was also detected in underfed virgin and lactating animals. These results indicate that lactation in the rat, even though it produces a reduction in brown fat activity, does not impair the capacity of the tissue to respond to a diminished caloric intake by lowering its activity further.  相似文献   

12.
Reduced brown adipose tissue thermogenesis of obese rats after ovariectomy   总被引:1,自引:0,他引:1  
Brown adipose tissue (BAT) thermogenesis was assessed by measuring mitochondrial guanosine diphosphate (GDP) binding, cytochrome oxidase activity and oxygen consumption in ovariectomized (OVX) and sham-operated rats. The food intake and body weight of OVX rats increased more than those of controls and OVX rats became obese. Mitochondrial GDP binding, as an indicator of thermogenic activity, cytochrome oxidase activity, as a marker of mitochondrial abundance, and mitochondrial respiration of BAT in OVX rats were significantly reduced compared with those in controls. And, also, even when OVX rats were restricted in food intake (pair-gained) to produce comparable changes in body weight with sham-controls, or matched in food intake (pair-fed) with sham-controls, these parameters in both pair-gained and pair-fed OVX groups were decreased markedly compared to those in sham-controls. As expected, body weight in pair-fed OVX rats increased significantly more than that in sham-controls. In response to cold exposure, these parameters of OVX rats increased as much as those of controls did. These results suggest that reduced brown adipose tissue thermogenesis might be one of the important factors that are responsible for the development of obesity after OVX.  相似文献   

13.
14.
15.
Fatty-acid synthesis has been measured in vivo with3H2O in cafeteria-fed rats exhibiting diet-induced thermogenesis. Synthesis was decreased in brown adipose tissue, the liver, white adipose tissue, and the carcass of the cafeteria-fed animals compared to rats fed the normal stock diet. Whole-body synthesis was also decreased in the cafeteria-fed group. Diet-induced thermogenesis, in contrast to cold-induced non-shivering thermogenesis does not lead to increased fatty-acid synthesis and this is presumably due to the inhibitory effects on lipogenesis of the high dietary fat intake characteristic of cafeteria diets. The results also indicate that the energy cost of body fat deposition in cafeteria-fed rats is lower than in animals fed a low-fat/high-carbohydrate stock diet.  相似文献   

16.
Brown adipose tissue in humans   总被引:1,自引:0,他引:1  
  相似文献   

17.
18.
19.
Brown adipose tissue (BAT) is a major site of nonshivering thermogenesis (NST) during cold acclimation for most mammals. Repetitive nonthermal stress such as immobilization has been shown to enhance the capacity of NST as cold acclimation. In the present study, the effects of running training, another type of nonthermal stress, were investigated on in vitro thermogenesis and the cellularity of interscapular BAT in rats. The rats were subjected to treadmill running for 30 min daily at 30 m/min under 8° inclination for 4–5 weeks. In vitro thermogenesis was then measured in minced tissue blocks incubated in a Krebs-Ringer phosphate buffer containing glucose and albumin at 37° C, using a Clark type oxygen electrode. The trained rats showed less body weight gain during the experiment. The weights of BAT and epididymal white adipose tissue were smaller in the trained rats. Noradrenaline- and glucagon-stimulated oxygen consumption were also significantly smaller in the trained rats. The tissue DNA level was greater in the trained rats, but the DNA content per tissue pad did not significantly differ. The results indicate that running training reduces BAT thermogenesis, possibly as an adaptation to conserve energy substrates for physical work.  相似文献   

20.
The noradrenaline-induced energy dissipation rate was measured with a direct microcalorimeter in brown adipose tissue taken from rats acclimated to 34 degrees C (HA), perchlorate treated (PC) and heat acclimated-perchlorate treated (HAPC). The response to 10(-7) M NA was reduced by 45%, 47% and 86% in HA, PC and HAPC groups, respectively, as compared to a control group kept at 24 degrees C. In the same groups, the response to 10(-6) M NA was reduced by 34%, 7% and 64%, respectively. The specific activity of the soluble alpha-glycerophosphate dehydrogenase in brown fat from HA rats was reduced by 50%, whereas it was not altered in the PC animals. It is concluded that the sensitivity to noradrenaline of the brown adipose tissue thermogenic mechanisms is decreased in hypothyroidism, and that the acclimation temperature and the thyroid status per se each have a different influence on brown adipose tissue function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号