首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
* Here we analyzed the shape of the central vacuole of Acetabularia acetabulum by visualizing its development during diplophase (from juvenility through reproduction) and haplophase (from meiosis through mating). * Light microscopy and whole-organism applications of a pH-sensitive dye, neutral red, were used to visualize the anatomy of the central vacuole. We studied connectivity within the thallus by locally applying dye to morphologically distinct regions (rhizoid, stalk, apex, hairs) and observing dye movements. * In vegetative thalli most of the rhizoid, stalk and young hairs stained with dye. In reproductive structures (caps, gametangia) dye also stained the majority of the interiors. When applied to small areas, dye moved at different rates through each region of the thallus (e.g. within the stalk). Dye moved from younger hairs, but not from older hairs, into the stalk. Errors in incorporation of central vacuole into gametangia occurred at <10(-5). * These data indicate that the central vacuole of A. acetabulum is a ramified polar organelle with, potentially, a gel-like sap that actively remodels its morphology during development.  相似文献   

2.
Summary.  Effects on morphology and microfilament structure caused by phalloidin, phallacidin, and some semisynthetic phalloidin derivatives were studied in vegetative cells of the green alga Acetabularia acetabulum (L.) Silva. All phalloidin derivatives (except for phalloidin itself) caused growth stop of the alga after 1 day and (except for the fluorescein-labeled phalloidin) death of the cells after 4–7 days. Hair whorl tip growth and morphology as screened by light microscopy, as well as microfilament structure in tips, suggested that growth stop is correlated with a disorganization of actin filaments similar to that recently described for jasplakinolide (H. Sawitzky, S. Liebe, J. Willingale-Theune, D. Menzel, European Journal of Cell Biology 78: 424–433, 1999). Using rabbit muscle actin as a model target protein, we found that the toxic effects in vivo did not correlate with actin affinity values, suggesting that permeation through membranes must play a role. Indeed, the most lipophilic phalloidin derivatives benzoylphalloidin and dithiolanophalloidin were the most active in causing growth stop at ca. 100 μM. In comparison to the concentration of jasplakinolide required to cause similar effects (<3 μM), the two most active phalloidin derivatives exhibited an activity ca. 30 times lower. Nonetheless, lipophilic phalloidin derivatives can be used in algae, and probably also other cells, to modulate actin dynamics in vivo. In addition, we found that the fluorescent fluorescein isothiocyanate-phalloidin is able to enter living algal cells and stains actin structures brightly. Since it does not suppress actin dynamics, we suggest fluorescein isothiocyanate-phalloidin as a tool for studying rearrangements of actin structures in live cells, e.g., by confocal laser scanning microscopy. Received November 5, 2001; accepted August 8, 2002; published online November 29, 2002  相似文献   

3.
4.
Marine algae are one of the most important sources of high-value compounds such as polar lipids, omega-3 fatty acids, photosynthetic pigments, or secondary metabolites with interesting features for different niche markets. Acetabularia acetabulum is a macroscopic green single-celled alga, with a single nucleus hosted in the rhizoid. This alga is one of the most studied dasycladalean species and represents an important model system in cell biology studies. However, its lipidome and pigment profile have been overlooked. Total lipid extracts were analyzed using hydrophilic interaction liquid chromatography-high resolution mass spectrometry (HILIC-HRMS), tandem mass spectrometry (MS/MS), and high-performance liquid chromatography (HPLC). The antioxidant capacity of lipid extracts was tested using DPPH and ABTS assays. Lipidomics identified 16 polar lipid classes, corresponding to glycolipids, betaine lipids, phospholipids, and sphingolipids, with a total of 191 lipid species, some of them recognized by their bioactivities. The most abundant polar lipids were glycolipids. Lipid classes less studied in algae were identified, such as diacylglyceryl-carboxyhydroxymethylcholine (DGCC) or hexosylceramide (HexCer). The pigment profile of A. acetabulum comprised carotenoids (17.19%), namely cis-neoxanthin, violaxanthin, lutein and β,β-carotene, and chlorophylls a and b (82.81%). A. acetabulum lipid extracts showed high antioxidant activity promoting a 50% inhibition (IC50) with concentrations of 57.91 ± 1.20 μg · mL−1 (438.18 ± 8.95 μmol Trolox · g−1 lipid) in DPPH and 20.55 ± 0.60 μg · mL−1 in ABTS assays (918.56 ± 27.55 μmol Trolox · g−1 lipid). This study demonstrates the potential of A. acetabulum as a source of natural bioactive molecules and antioxidant compounds.  相似文献   

5.
Acetabularia acetabulum (Linn.) P.C. Silva, is a useful system for studying changes in shape because it is large, morphologically complex unicell. The middle, or gametophore lobe of the cap grows radially from the stalk axis as a disc and the fully grown cap can be one of several shapes: flat, concave, convex, and saddle. The shape of the cap normally changes during the first three and a half weeks of reproductive development: individual caps within a population change shape in a stereotypical progression, with the majority proceeding from concave to flat to saddle. Marking the existing surface of caps with carbon grains revealed that the majority of growth occurs near the center, not at the perimeter, of caps. The shape of the mature cap appeared to be independent of algal height, number of gametophores per cap, and final cap diameter. Removing the rhizoid, which contains the nucleus, suggested that the contribution of the nucleus may be important for changes in shape during early cap growth. Based on these data, we present a simple model of cap shape development that suggests both differential growth and biophysical factors may contribute to the final shape of caps of A. acetabulum. Received: 7 January 1998 / Accepted: 7 March 1998  相似文献   

6.
At reproductive onset the marine green alga Acetabularia acetabulum (L.) P.C. Silva redirects growth from vertical elongation of the axis of the plant to lateral expansion of a disk-shaped reproductive structure, the “cap.” We used amputation to synchronize cap initiation and to facilitate investigation of the light requirements during amputation-induced cap initiation. Following amputation of a nascent cap, most plants initiate one whorl of vegetative hairs and then a cap. Both hair and cap initiation required photosynthesis, as indicated by studies with 3-(3′,4′-dichlorophenyl)-1, 1-dimethylurea, but did not require the nucleus. Amputation-induced hair initiation occurred in red light, but 10 min of blue light given in a background of red light significantly increased hair initiation, supporting previous studies that hair initiation is a blue-light-triggered photomorphogenic event. Amputation-induced cap initiation also occurred in red light, but daily 10-min flashes of blue light given in a background of red light did not significantly enhance cap initiation. We also examined the light requirements of intact plants at each phase of development. In the absence of blue light, juveniles and adults with ≤13.7 ± 4.3 whorls of hairs arrested in development and failed to initiate caps. In contrast, very late adults with ≥13.7 ± 4.3 whorls of hairs initiated caps in the absence of blue light, suggesting that there is a point in late adult development beyond which cap initiation does not require blue light. Several plausible interpretations of the role of light and the nucleus in the regulation of reproductive onset are discussed to try to reconcile these data with those in the literature. Received: 18 March 1999 / Accepted: 13 May 1999  相似文献   

7.
Despite the recognized physiological importance of transfer cells, little is known about how these specialized cells achieve localized deposition of cell wall material, leading to amplification of plasma membrane surface area and enhanced membrane transport capacity. This study establishes that cellulose synthesis is a key early factor in the construction of 'reticulate' wall ingrowths, an elaborate but common form of localized wall deposition characteristic of most transfer cells. Using field emission scanning electron microscopy, wall ingrowths were first visible in epidermal transfer cells of Faba bean cotyledons as raised 'patches' of disorganized and tangled cellulosic material, and, from these structures, ingrowths emerged via further deposition of wall material. The cellulose biosynthesis inhibitors 2,6-dichlorobenzonitrile and isoxaben both caused dramatic reductions in the number of cells depositing wall ingrowths, altered wall ingrowth morphology and visibly disrupted microfibril structure. The restriction of cellulose deposition to discrete patches suggests a novel mechanism for cellulose synthesis in this circumstance. Overall, these results implicate a central role for cellulose synthesis in reticulate wall ingrowth morphology, especially at the initial stage of ingrowth formation, possibly by providing a template for the self-assembly of wall polymers.  相似文献   

8.
Three Arabidopsis genes encoding a putative beta-galactosidase (At5g56870), beta-xylosidase (At5g49360) and beta-glucosidase (At3g60140) are induced by sugar starvation. The deduced proteins belong to the glycosyl hydrolase families 35, 3 and 1, respectively. They are predicted to be secretory proteins that play roles in modification of cell wall polysaccharides based on amino acid similarity. The beta-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved conditions with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose, as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These findings suggest that the cell wall may function as a storage reserve of carbon in addition to providing physical support for the plant body.  相似文献   

9.
P. Bachmann  K. Zetsche 《Planta》1979,145(4):331-337
The synthesis of cell wall mannan and the activities of guanosine-diphosphate-mannose-pyrophosphorylase (EC2.7.7.13) and mannan synthetase were studied during the development of nucleate and enucleated cells of the alga Acetabularia mediterranea. The activities of both enzymes are relatively high as long as the cells grow and synthesize mannans. With termination of growth and mannan synthesis, the activities of both enzymes, but especially of mannan synthetase, drop to a low value. Furthermore, the activities of both enzymes are distributed in the cell along an apical-basal gradient. High activities are present in the apical regions of the cell where growth and mannan synthesis mainly occur, whereas in the basal region, growth, mannan synthesis and the activity of the two enzymes are slight. Since the in vitro activity of GDP-Man-pyr is at least 100 times higher than that of mannan synthetase, it was concluded that mannan synthetase activity is the limiting factor in mannan synthesis. This conclusion is supported by the determined pool sizes of Fru 6-P, Man 6-P, Man 1-P and GDP-Man during the development of the cells. The control of mannan synthesis and with it cell wall formation and growth through the regulation of mannan synthetase activity is discussed.Abbreviations DD dark-dark regime - Fru 6-P fructose-6-phosphate - GDP-Man guanosine-diphosphate-mannose - GDP-Manpyr GDP-diphosphate-mannose-pyrophosphorylase - GTP guanosine-triphosphate - LD light-dark regime - Man 1-P mannose-1-phosphate - Man 6-P mannose-6-phosphate - TCA trichloracetic acid  相似文献   

10.
A comprehensive analysis was carried out of the composition of seed coat mucilage from Arabidopsis thaliana using the Columbia-0 accession. Pectinaceous mucilage is released from myxospermous seeds upon imbibition, and in Arabidopsis consists of a water-soluble, outer layer and an adherent, inner layer. Analysis of monosaccharide composition in conjunction with digestion with pectolytic enzymes conclusively demonstrated that the principal pectic domain of both layers was rhamnogalacturonan I, and that in the outer layer this was unbranched. The macromolecular characteristics of the water-soluble mucilage indicated that the rhamnogalacturonan molecules in the outer layer were in a slightly expanded random-coil conformation. The inner, adherent layer remained attached to the seed, even after extraction with acid and alkali, suggesting that its integrity was maintained by covalent bonds. Confocal microscopy and monosaccharide composition analyses showed that the inner layer can be separated into two domains. The internal domain contained cellulose microfibrils, which could form a matrix with RGI and bind it to the seed. In effect, in the mum5-1 mutant where most of the inner and outer mucilage layers were water soluble, cellulose remained attached to the seed coat. Immunolabeling with anti-pectin antibodies indicated the presence of galactan and arabinan in the inner layer, with the latter only present in the non-cellulose-containing external domain. In addition, JIM5 and JIM7 antibodies labeled different domains of the inner layer, suggesting the presence of stretches of homogalacturonan with different levels of methyl esterification.  相似文献   

11.
The involvement of actin filaments (AFs) in vesicle trafficking, cell wall construction and tip growth was investigated during pollen tube development of Picea meyeri. Pollen germination and tube elongation were inhibited in a dose-dependent manner by the latrunculin B (LatB) treatment. The fine AFs were broken down into disorganized fragments showing a tendency to aggregate. FM4-64 labeling revealed that the dynamic balance of vesicle trafficking was perturbed due to F-actin disruption and the fountain-like cytoplasmic pattern changed into disorganized Brownian movement. The configuration and/or distribution of cell wall components, such as pectins, callose and cellulose, as well as arabinogalactan proteins changed in obvious ways after the LatB application. Fourier transform infrared (FTIR) analysis further established significant changes in the chemical composition of the wall material. Our results indicate that depolymerization of AFs affects the distribution and configuration of cell wall components in Picea meyeri pollen tube by disturbing vesicle trafficking.  相似文献   

12.
Sexual dimorphism is controlled by genes on the Y chromosome in the dioecious plant Silene latifolia. K034 is the first mutant with female flowers and asexual flowers in one individual. Its stamens are suppressed completely, and its gynoecium exhibits two suppression patterns. One gynoecium resembles a thin rod, as in wild-type males (asexual flower); the other is imperfectly suppressed, having 1-3 carpels (female-like flower). The ratio of these patterns was 9 : 1. To exclude the possibility of chimerism in K034, we crossed a female-like flower of K034 with a wild-type male. Progeny obtained from this crossing had asexual and female-like flowers in one individual. This two-flower-type phenotype was inherited without separating. To examine the identity of flower organs in K034, we analyzed the development of asexual and female-like flowers using scanning electron microscopy and in situ hybridization with SLM1 and SLM2 (orthologs of AGAMOUS and PISTILLATA, respectively) as probes. Mitotic spreads of root tip chromosomes from hairy root cultures showed that K034 had 25 chromosomes. Fluorescent in situ hybridization analysis, using a subtelomeric repetitive sequence (KpnI subfamily) as a probe, indicated that K034 possessed two X chromosomes and one Y chromosome (Y(d)), of which Y(d) had been rearranged to lose the pseudoautosomal region (PAR). PCR analysis using Y-specific sequence-tagged site (STS) markers clarified that Y(d) of K034 had two other deletions in gynoecium-suppressing and stamen-promoting regions. It is reasonable to suggest that these sex chromosomal abnormalities resulted in two abnormal sexual phenotypes: the asexual and imperfect female (female-like) flowers in K034.  相似文献   

13.
14.
15.
To enable large-scale multi-factorial finite element (FE) studies, the FE models used must be as computationally efficient as is feasible, while maintaining a suitable level of definition. The present study seeks to find an optimum level of model complexity for use in such large-scale studies by investigating which model attributes are most influential over the chosen model outputs of principal stress and strain in the intact acetabulum. A multi-factorial sensitivity study was carried out using 128 FE models, representing combinations of the following variables: bone stiffness distribution, imposed muscle loading, boundary condition location, hip joint contact conditions and patient's bone anatomy. The relative sensitivity of each input factor was analysed, and it was concluded that the optimum level of model definition must include CT-dependent trabecular bone properties and a sliding interface at the hip joint. It was found that it was not essential to describe the ligamentous sacroiliac and pubic symphysis joints; these could be rigidly fixed in space; and for the normal walking load case, muscle forces may be neglected. It was also concluded that a variety of bone anatomies should be included in a multi-factorial analysis if results are to be inferred for a wider population.  相似文献   

16.
PINOID, a serine threonine protein kinase in Arabidopsis, controls auxin distribution through a positive control of subcellular localization of PIN auxin efflux carriers. Compared with the rapid progress in understanding mechanisms of auxin action in dicot species, little is known about auxin action in monocot species. Here, we describe the identification and characterization of OsPID, the PINOID ortholog of rice. Phylogenetic analysis showed that the rice genome contains a single PID ortholog, OsPID. Constitutive overexpression of OsPID caused a variety of abnormalities, such as delay of adventitious root development, curled growth of shoots and agravitropism. Abnormalities observed in the plants that overexpress OsPID could be phenocopied by treatment with an inhibitor of active polar transport of auxin, indicating that OsPID could be involved in the control of polar auxin transport in rice. Analysis of OsPID mRNA distribution showed a complex pattern in shoot meristems, indicating that it probably plays a role in the pattern formation and organogenesis in the rice shoot.  相似文献   

17.
The plastid gene psbC encodes the CP43 subunit of PSII. Most psbC mRNAs of many organisms possess two possible initiation codons, AUG and GUG, and their coding regions are generally annotated from the upstream AUG. Using a chloroplast in vitro translation system, we show here that translation of the tobacco plastid psbC mRNA initiates from the GUG. This mRNA possesses a long Shine-Dalgarno (SD)-like sequence, GAGGAGGU, nine nucleotides upstream of the GUG. Point mutations in this sequence abolished translation, suggesting that a strong interaction between this extended SD-like sequence and the 3' end of 16S rRNA facilitates translation initiation from the GUG.  相似文献   

18.
In Arabidopsis thaliana, the flowering time is regulated through the circadian clock that measures day-length and modulates the photoperiodic CO-FT output pathway in accordance with the external coincidence model. Nevertheless, the genetic linkages between the major clock-associated TOC1, CCA1 and LHY genes and the canonical CO-FT flowering pathway are less clear. By employing a set of mutants including an extremely early flowering toc1 cca1 lhy triple mutant, here we showed that CCA1 and LHY act redundantly as negative regulators of the photoperiodic flowering pathway. The partly redundant CCA1/LHY functions are largely, but not absolutely, dependent on the upstream TOC1 gene that serves as an activator. The results of examination with reference to the expression profiles of CO and FT in the mutants indicated that this clock circuitry is indeed linked to the CO-FT output pathway, if not exclusively. For this linkage, the phase control of certain flowering-associated genes, GI, CDF1 and FKF1, appears to be crucial. Furthermore, the genetic linkage between TOC1 and CCA1/LHY is compatible with the negative and positive feedback loop, which is currently believed to be a core of the circadian clock. The results of this study suggested that the circadian clock might open an exit for a photoperiodic output pathway during the daytime. In the context of the current clock model, these results will be discussed in connection with the previous finding that the same clock might open an exit for the early photomorphogenic output pathway during the night-time.  相似文献   

19.
The enormous metabolic plasticity of plants allows detoxificationof many harmful compounds that are generated during biosyntheticprocesses or are present as biotic or abiotic toxins in theirenvironment. Derivatives of toxic compounds such as glutathioneconjugates are moved into the central vacuole via ATP-bindingcassette (ABC)-type transporters of the multidrug resistance-associatedprotein (MRP) subfamily. The Arabidopsis genome contains 15AtMRP isogenes, four of which (AtMRP1, 2, 11 and 12) clustertogether in one of two major phylogenetic clades. We isolatedT-DNA knockout alleles in all four highly homologous AtMRP genesof this clade and subjected them to physiological analysis toassess the function of each AtMRP of this group. None of thesingle atmrp mutants displayed visible phenotypes under controlconditions. In spite of the fact that AtMRP1 and AtMRP2 hadbeen described as efficient ATP-dependent organic anion transportersin heterologous expression experiments, the contribution ofthree of the AtMRP genes (1, 11 and 12) to detoxification ismarginal. Only knockouts in AtMRP2 exhibited a reduced sensitivitytowards 1-chloro-2,4-dinitrobenzene, but not towards other herbicides.AtMRP2 but not AtMRP1, 11 and 12 is involved in chlorophylldegradation since ethylene-treated rosettes of atmrp2 showedreduced senescence, and AtMRP2 expression is induced duringsenescence. This suggests that AtMRP2 is involved in vacuolartransport of chlorophyll catabolites. Vacuolar uptake studiesdemonstrated that transport of typical MRP substrates was reducedin atmrp2. We conclude that within clade I, only AtMRP2 contributessignificantly to overall organic anion pump activity in vivo.  相似文献   

20.
Berger S  Liddle LB  Dillard WL  Wittke W  Traub P 《Protoplasma》2003,221(3-4):277-288
Summary.  10 nm diameter filaments were observed in whole-mount preparations of algae of diverse phyla: Acetabularia acetabulum and A. major (Chlorophyta), Chara australis and Nitella flexilis (Charophyta), and Poterioochromonas malhamensis (Chrysophyta). A polyclonal antibody raised against a basic, 50 kDa DNA-binding protein of A. acetabulum stains the filaments of A. acetabulum and A. major as well as of C. australis and N. flexilis. While in the perinuclear region of A. acetabulum and A. major and throughout the cytoplasm of P. malhamensis the 10 nm filaments have a smooth appearance, in the stalk of A. acetabulum and A. major they are densely covered by globular structures; in C. australis and N. flexilis they are less frequently associated with such material. The morphology of a part of the globular particles is quite reminiscent of prosomes. A monoclonal antibody elicited against prosomes isolated from A. acetabulum indeed decorates the globular particles on the A. acetabulum and A. major filaments. The possible role of these filament-particle associations is discussed. Received August 10, 2001; accepted October 30, 2002; published online April 8, 2003 RID="*" ID="*" Correspondence and reprints: Max-Planck-Institut für Zellbiologie, 68526 Ladenburg, Federal Republic of Germany. E-mail: sberger@zellbio.mpg.de RID="**" ID="**" Present address: Long Island University, Southampton, New York, U.S.A. RID="+" ID="+" Present address: Leica Microsystems Wetzlar GmbH, Wetzlar, Federal Republic of Germany  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号