首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary cell walls from plants are composites of cellulose tethered by cross-linking glycans and embedded in a matrix of pectins. Cell wall composition varies between plant species, reflecting in some instances the evolutionary distance between them. In this work the monosaccharide compositions of isolated primary cell walls of nine fern species and one lycophyte were characterized and compared with those from Equisetum and an angiosperm dicot. The relatively high abundance of mannose in these plants suggests that mannans may constitute the major cross-linking glycan in the primary walls of pteridophytes and lycophytes. Pectin-related polysaccharides contained mostly rhamnose and uronic acids, indicating the presence of rhamnogalacturonan I highly substituted with galactose and arabinose. Structural and fine-structural analyses of the hemicellulose fraction of leaves of Adiantum raddianum confirmed this hypothesis. Linkage analysis showed that the mannan contains mostly 4-Man with very little 4,6-Man, indicating a low percentage of branching with galactose. Treatment of the mannan-rich fractions with endo-β-mannanase produced characteristic mannan oligosaccharides. Minor amounts of xyloglucan and xylans were also detected. These data and those of others suggest that all vascular plants contain xyloglucans, arabinoxylans, and (gluco)mannans, but in different proportions that define cell wall types. Whereas xyloglucan and pectin-rich walls define Type I walls of dicots and many monocots, arabinoxylans and lower proportion of pectin define the Type II walls of commelinoid monocots. The mannan-rich primary walls with low pectins of many ferns and a lycopod indicate a fundamentally different wall type among land plants, the Type III wall.  相似文献   

2.
Polysaccharides containing -1,4-mannosyl residues (mannans) are abundant in the lignified secondary cell walls of gymnosperms, and are also found as major seed storage polysaccharides in some plants, such as legume species. Although they have been found in a variety of angiosperm tissues, little is known about their presence and tissue localisation in the model angiosperm, Arabidopsis thaliana (L.) Heynh. In this study, antibodies that specifically recognised mannans in competitive ELISA experiments were raised in rabbits. Using these antibodies, we showed that Golgi-rich vesicles derived from Arabidopsis callus were able to synthesise mannan polysaccharides in vitro. Immunofluorescence light microscopy and immunogold electron microscopy of Arabidopsis inflorescence stem sections revealed that the mannan polysaccharide epitopes were localised in the thickened secondary cell walls of xylem elements, xylem parenchyma and interfascicular fibres. Similarly, mannan epitopes were present in the xylem of the leaf vascular bundles. Surprisingly, the thickened epidermal cell walls of both leaves and stems also contained abundant mannan epitopes. Low levels were observed in most other cell types examined. Thus, mannans are widespread in Arabidopsis tissues, and may be of particular significance in both lignified and non-lignified thickened cell walls. Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) of cell wall preparations digested with a specific mannanase showed that there is glucomannan in inflorescence stems. The findings show that Arabidopsis can be used as a model plant in studies of the synthesis and functions of mannans.Abbreviations BSA bovine serum albumin - ELISA enzyme-linked immunosorbent assay - PACE polysaccharide analysis by carbohydrate gel electrophoresis  相似文献   

3.
We examined the change of the composition of the cell wall polysaccharides prepared from cells of the salt-tolerant yeast Zygosaccharomyces rouxii grown in two media containing 20% NaCl and 0% NaCl. Comparative analysis of their walls showed that the wall obtained from salt-free medium had greater quantities of alkali-insoluble fraction and smaller quantities of mannan than the walls obtained from 20% NaCl medium. The alkali-insoluble fractions from the cell walls obtained from salt-free medium contained a large amount of glucosamine and a smaller amount of linear β-1,3-glucosidic linkage than the fractions from the cell walls obtained from 20% NaCl medium. Structural analyses showed that the mannans from each cell wall contained an α-1,6-mannbsidic linked backbone to which single mannose and mannobiose units were connected as side chains by α-1,2-mannosidic linkages. However, when cells were grown in the presence of 20% NaCl, the side chains of the mannans consisting of a mannobiose unit were largely reduced.

These results indicated that the structure of alkali-insoluble glucan and mannan were greatly affected by the presence of NaCl in the final medium.  相似文献   

4.
Despite the importance of transfer cells in enhancing nutrient transport in plants, little is known about how deposition of the complex morphology of their wall ingrowths is regulated. We probed thin sections of mature cotyledon epidermal transfer cells of Vicia faba with affinity probes and antibodies specific to polysaccharides and glycoproteins, to determine the distribution of these components in their walls. Walls of these transfer cells consist of the pre-existing primary wall, a uniformly deposited wall layer and wall ingrowths which are comprised of two regions; an electron-opaque inner region and an electron-translucent outer region. The primary wall reacted strongly with antibodies against esterified pectin, xyloglucan, the side chains of rhamnogalaturonan-1 and a cellulase-gold affinity probe. The electron-opaque inner region of wall ingrowths displayed a similar labeling pattern to that of the primary wall, showing strong cross-reactivity with all antibodies tested, except those reacting against highly de-esterified pectins. The electron-opaque outer layer of developmentally more mature wall ingrowths reacted strongly with anti-callose monoclonal and polyclonal antibodies, but showed no reaction for pectin or xyloglucan antibodies or the cellulase-gold affinity probe. The plasma membrane-wall interface was labeled strongly with anti-arabinogalactan protein (AGP) antibodies, with some AGP-reactive antibodies also labeling the electron-translucent zone. Nascent wall ingrowths were labeled specifically with AGPs but not anti-callose. A reduction in wall ingrowth density was observed when developing transfer cells were exposed to beta-d-glucosyl Yariv reagent compared with controls. Our results indicate that wall ingrowths of transfer cells are primary wall-like in composition and probably require AGPs for localized deposition.  相似文献   

5.
Cell walls of tomato fruit contain hemicellulosic mannans that may fulfill a structural role. Two populations were purified from cell walls of red ripe tomato tissue and named galactoglucomannan-glucuronoxylan I and II (GGM-GX I and II), respectively. Both polysaccharides not only consisted of mannose, glucose and galactose, indicating the presence of GGM, but also contained xylose and glucuronic acid, indicating the presence of GX. Treatment of both polysaccharides with xylanase or endo-β-mannanase showed that the GX and the GGM were associated in a complex. The composition of GGM-GX II changed slightly during tomato ripening, but both GGM-GX I and II showed no change in molecular weight, indicating that they were not hydrolyzed during ripening. Ripe tomato fruit also possess an endo-β-mannanase, an enzyme that in vitro was capable of either hydrolyzing GGM-GX I and II (endo-β-mannanase activity), or transglycosylating them in the presence of mannan oligosaccharides (mannan transglycosylase activity). The lack of evidence for hydrolysis of these potential substrates in vivo suggests either that the enzyme and potential substrates are not accessible to each other for some reason, or that the main activity of endo-β-mannanase is not hydrolysis but transglycosylation, a reaction in which polysaccharide substrates and end-products are indistinguishable. Transglycosylation would remodel rather than weaken the cell wall and allow the fruit epidermis to possibly retain flexibility and plasticity to resist cracking and infection when the fruit is ripe.  相似文献   

6.
7.
Cell wall chemistry in the coencocytic green seaweed Codium vermilara (Olivi) Delle Chiaje (Bryopsidales, Chlorophyta) is well understood. These cell walls are composed of major amounts of neutral β‐(1→4)‐D‐ mannans (Mn), sulfated polysaccharides (SPs), which include pyranosic arabinan sulfates (ArpS), pyruvylated galactan sulfates (pGaS), and mannan sulfates (MnS); also minor amounts of O‐glycoproteins are present. In this study, cell wall samples of C. vermilara were investigated with regard to their monosaccharide composition and infrared spectra (using Fourier transform infrared spectroscopy coupled to principal component [FTIR‐PC] analysis). Samples from three different populations of C. vermilara from the Argentine coast showed: (i) an important variation in the relative arabinan content, which increases from north to south, and (ii) a measurable degree of cell wall variability in the sulfate distribution between the different sulfated polysaccharides, independent of the amount of each polysaccharide present and of total sulfate content. When cell wall composition was analyzed over three consecutive years in a single geographic location, the quantity of Mn and overall sulfate content on SPs remained constant, whereas the pGaS:ArpS molar ratio changed over the time. Besides, similar cell wall composition was found between actively growing and resting zones of the thallus, suggesting that cell wall composition is independent of growth stage and development. Overall, these results suggest that C. vermilara has developed a mechanism to adjust the total level of cell wall sulfation by modulating the ArpS:pGaS:MnS molar ratio and also by adjusting the sulfation level in each type of polymer, whereas nonsulfated Mn, as the main structural polysaccharide, did not change over the time or growing stage.  相似文献   

8.
Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.  相似文献   

9.
Zymolyase B decreased the turbidity of a yeast cell wall suspension by about 50% and caused release of peptide-mannan from the cell walls. However cell walls treated with the enzyme still maintained the cell shape. The effect of the enzyme on the cell walls was inhibited by yeast mannan and completely counteracted by treatment of the enzyme with DFP. The activity was not affected by pH, but was considerably reduced by incubation of the enzyme at 55°C for 15 min, a treatment that did not affect the proteolytic activity. Heat-treatment decreased the molecular weight of the enzyme from 29,000 to 22,500 and its sensitivity to yeast mannan. Yeast mannan caused noncompetitive inhibition of the proteolytic activity of the native enzyme and competitive inhibition of that of the heat-treated enzyme. Modification of tryptophan residues of Zymolyase B resulted in decreased sensitivity to yeast mannan and a decrease in the activity of the enzyme on yeast cell walls as well as heat-treatment. On the basis of these results, it is hypothesized that Zymolyase B binds to the cell wall mannans and changes their conformation, making the attached proteins susceptible to proteolysis, and then releases peptide-mannan from the cell walls.  相似文献   

10.
Cells of Saccharomyces rouxii (a salt-tolerant yeast) were grown in the presence of two levels of NaCl, 0 and 15%. Mannans obtained from both the cell walls and culture filtrates (extracellular) were examined. Yields based on the dry weight of cells demonstrated that the levels of both cell wall and extracellular mannans were lower when cells were grown in the presence of 15% NaCl. However, the carbohydrate and protein contents of the mannan preparations were not altered. The cell wall mannans obtained from the two growth conditions had similar molecular weights, whereas the extracellular mannans had different molecular weight distributions. Structural analyses showed that the cell wall and extracellular mannans had similar structures. Both had an α1-6-linked backbone to which single mannose and mannobiose units were connected as side chains, predominantly by α1-2 linkages. The mannans also contained mannosyloligosaccharides, mannotriose, mannobiose, and mannose attached to protein through an O-glycosidic bond. The molecular structure of the cell wall mannans remained unchanged at both levels of NaCl. However, in the presence of 15% NaCl, the side chains consisting of a mannobiose unit were slightly reduced.  相似文献   

11.
The new isolated yeasts were very good producers of biomass from methanol. Their taxonomic studies were based on classical classification, GC content of DNA, proton magnetic resonance spectrum of the cell wall mannans and mannan and glucan and chitin contents in the cell walls. The isolates could not be identified with any species described in literature. Considering their special features and some relation to the known species, the isolated yeasts were classified as follows: C-16 as Candida bimundalis var. chlamydospora, C-4 as Candida melinii var. melibiosica, D-3 as Candida silvicola var. melibiosica and M-1 as Torulopsis candida var. nitratophila.  相似文献   

12.
13.
Cell walls in the coenocytic green seaweed Codium vermilara (Olivi) Chiaje (Bryopsidales, Chlorophyta) are composed of ~32% (w/w) β‐(1→4)‐d‐mannans, ~12% sulfated polysaccharides (SPs), and small amounts of hydroxyproline‐rich glycoprotein‐like (HRGP‐L) compounds of the arabinogalactan proteins (AGPs) and arabinosides (extensins). Similar quantities of mannans and SPs were reported previously in the related seaweed C. fragile (Suringar) Hariot. Overall, both seaweed cell walls comprise ~40%–44% of their dry weights. Within the SP group, a variety of polysaccharide structures from pyruvylated arabinogalactan sulfate and pyruvylated galactan sulfate to pyranosic arabinan sulfate are present in Codium cell walls. In this paper, the in situ distribution of the main cell‐wall polymers in the green seaweed C. vermilara was studied, comparing their arrangements with those observed in cell walls from C. fragile. The utricle cell wall in C. vermilara showed by TEM a sandwich structure of two fibrillar‐like layers of similar width delimiting a middle amorphous‐like zone. By immuno‐ and chemical imaging, the in situ distribution of β‐(1→4)‐d‐mannans and HRGP‐like epitopes was shown to consist of two distinct cell‐wall layers, whereas SPs are distributed in the middle area of the wall. The overall cell‐wall polymer arrangement of the SPs, HRGP‐like epitopes, and mannans in the utricles of C. vermilara is different from the ubiquitous green algae C. fragile, in spite of both being phylogenetically very close. In addition, a preliminary cell‐wall model of the utricle moiety is proposed for both seaweeds, C. fragile and C. vermilara.  相似文献   

14.
Three Arabidopsis genes encoding a putative beta-galactosidase (At5g56870), beta-xylosidase (At5g49360) and beta-glucosidase (At3g60140) are induced by sugar starvation. The deduced proteins belong to the glycosyl hydrolase families 35, 3 and 1, respectively. They are predicted to be secretory proteins that play roles in modification of cell wall polysaccharides based on amino acid similarity. The beta-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved conditions with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose, as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These findings suggest that the cell wall may function as a storage reserve of carbon in addition to providing physical support for the plant body.  相似文献   

15.
The cytokine-inducing activities of fungal polysaccharides were examined in human monocytes in culture, with special reference to CD14 and Toll-like receptors (TLRs). Tumor necrosis factor alpha (TNF-alpha) production by monocytes was markedly induced in a dose-dependent manner upon stimulation with cell walls from Candida albicans and mannan from Saccharomyces cerevisiae and C. albicans, although relatively high concentrations (10 to 100 microg/ml) of stimulants were required for activation as compared with the reference lipopolysaccharide (LPS) (1 to 10 ng/ml). The yeast form C. albicans and its mannan and cell wall fractions exhibited higher TNF-alpha production than respective preparations from the hyphal form. Only slight TNF-alpha production was induced by the S. cerevisiae glucan. The TNF-alpha production triggered by reference LPS and purified fungal mannans required the presence of LPS-binding protein (LBP), and these responses were inhibited by anti-CD14 and anti-TLR4 antibodies, but not by anti-TLR2 antibody. In contrast to the activity of LPS, the activity of purified S. cerevisiae mannan was not inhibited by polymyxin B. These findings suggested that the mannan-LBP complex is recognized by CD14 on monocytes and that signaling through TLR4 leads to the production of proinflammatory cytokines in a manner similar to that induced by LPS.  相似文献   

16.
The proton magnetic resonance spectra of the mannose-containing polysaccharides of 48Candida species were determined. Two other species formed heteropolymers for which p.m.r. spectra could not be obtained. The species were grouped as follows: 17 species formed mannose-containing polysaccharides with spectra like those ofHansenula anomala, Pichia farinosa, Pichia membranaefaciens orPichia robertsii mannans; 12, like those ofMetschnikowia andDebaryomyces mannans; 6, like those of mannans ofSaccharomyces species; 4, like that ofTorulopsis bombicola mannan; and 4, like those ofCandida obtusa andCandida tepae polysaccharides. Five formed mannans whose spectra were unlike those of the mannans of any other yeast species examined.  相似文献   

17.
BACKGROUND AND AIMS: Seeds of carob, Chinese senna, date and fenugreek are hard due to thickened endosperm cell walls containing mannan polymers. How the radicle is able penetrate these thickened walls to complete seed germination is not clearly understood. The objective of this study was to determine if radicle emergence is related to the production of endo-beta-mannanase to weaken the mannan-rich cell walls of the surrounding endosperm region, and/or if the endosperm structure itself is such that it is weaker in the region through which the radicle must penetrate. METHODS: Activity of endo-beta-mannanase in the endosperm and embryo was measured using a gel assay during and following germination, and the structure of the endosperm in juxtaposition to the radicle, and surrounding the cotyledons was determined using fixation, sectioning and light microscopy. KEY RESULTS: The activity of endo-beta-mannanase, the major enzyme responsible for galactomannan cell wall weakening increased in activity only after emergence of the radicle from the seed. Thickened cell walls were present in the lateral endosperm in the hard-seeded species studied, but there was little to no thickening in the micropylar endosperm except in date seeds. In this species, a ring of thin cells was visible in the micropylar endosperm and surrounding an operculum which was pushed open by the expanding radicle to complete germination. CONCLUSIONS: The micropylar endosperm presents a lower physical constraint to the completion of germination than the lateral endosperm, and hence its structure is predisposed to permit radicle protrusion.  相似文献   

18.
The hydroxyl radical produced in the apoplast has been demonstratedto facilitate cell wall loosening during cell elongation. Cellwall-bound peroxidases (PODs) have been implicated in hydroxylradical formation. For this mechanism, the apoplast or cellwalls should contain the electron donors for (i) H2O2 formationfrom dioxygen; and (ii) the POD-catalyzed reduction of H2O2to the hydroxyl radical. The aim of the work was to identifythe electron donors in these reactions. In this report, hydroxylradical (·OH) generation in the cell wall isolated frompea roots was detected in the absence of any exogenous reductants,suggesting that the plant cell wall possesses the capacity togenerate ·OH in situ. Distinct POD and Mn-superoxidedismutase (Mn-SOD) isoforms different from other cellular isoformswere shown by native gel electropho-resis to be preferably boundto the cell walls. Electron paramagnetic resonance (EPR) spectroscopyof cell wall isolates containing the spin-trapping reagent,5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO),was used for detection of and differentiation between ·OHand the superoxide radical (O2·). The data obtainedusing POD inhibitors confirmed that tightly bound cell wallPODs are involved in DEPMPO/OH adduct formation. A decreasein DEPMPO/OH adduct formation in the presence of H2O2 scavengersdemonstrated that this hydroxyl radical was derived from H2O2.During the generation of ·OH, the concentration of quinhydronestructures (as detected by EPR spectroscopy) increased, suggestingthat the H2O2 required for the formation of ·OH in isolatedcell walls is produced during the reduction of O2 by hydroxycinnamicacids. Cell wall isolates in which the proteins have been denaturated(including the endogenous POD and SOD) did not produce ·OH.Addition of exogenous H2O2 again induced the production of ·OH,and these were shown to originate from the Fenton reaction withtightly bound metal ions. However, the appearance of the DEPMPO/OOHadduct could also be observed, due to the production of O2·when endogenous SOD has been inactivated. Also, O2·was converted to ·OH in an in vitro horseradish peroxidase(HRP)/H2O2 system to which exogenous SOD has been added. Takentogether with the discovery of the cell wall-bound Mn-SOD isoform,these results support the role of such a cell wall-bound SODin the formation of ·OH jointly with the cell wall-boundPOD. According to the above findings, it seems that the hydroxycinnamicacids from the cell wall, acting as reductants, contribute tothe formation of H2O2 in the presence of O2 in an autocatalyticmanner, and that POD and Mn-SOD coupled together generate ·OHfrom such H2O2.  相似文献   

19.
The use of microorganisms for Aflatoxin B1 elimination has been studied as a new alternative tool and it is known that cell wall carried out a critical role. For that reason, cell wall and soluble intracellular fraction of eight yeasts with AFB1 detoxification capability were analysed. The quantitative and qualitative comparative label-free proteomic allowed the identification of diverse common constituent proteins, which revealed that putative cell wall proteins entailed less than 10% of the total proteome. It was possible to characterize different enzymes linked to cell wall polysaccharides biosynthesis as well as other proteins related with the cell wall organization and regulation. Additionally, the concentration of the principal polysaccharides was determined which permitted us to observe that β-glucans concentration was higher than mannans in most of the samples. In order to better understand the biosorption role of the cell wall against the AFB1, an antimycotic (Caspofungin) was used to damage the cell wall structure. This assay allowed the observation of an effect on the normal growth of those yeasts with damaged cell walls that were exposed to AFB1. This effect was not observed in yeast with intact cell walls, which may reveal a protective role of this structure against mycotoxins.  相似文献   

20.
The possibility of an association between changes in cell walls of the micropylar portion of the endosperm and the induction of germination was explored in seeds of Datura ferox and Datura stramonium. The structure of the inner surface of the endosperm was studied by scanning electron microscopy and the composition of cell wall polysaccharides analyzed by gas chromatography and gas chromatography-mass spectrometry. Both scanning electron microscope images and chemical analysis showed changes in the micropylar portion of the endosperm in induced seeds before radicle protrusion. The inner surface of the endosperm appeared eroded, and in some areas, wall material seemed to be missing. The content of the main component of the cell wall polysaccharides, containing predominantly 4-linked mannose, decreased well before the emergence of the radicle through the endosperm. We propose that the degradation of a mannan type polysaccharide is an important factor in the reduction in mechanical strength of the endosperm, thus facilitating germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号