首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chelating potential of N,2'-DPAHA with 3d metal ions such as Cu(II), Ni(II), Zn(II), and Cd(II) in the presence of Gly and Phen has been investigated. These experiments were designed to study the role of the stability of mixed-ligand complexes in the modulation of its fungicidal potential. The mixed-ligand complexes were found to be more stable than binary complexes. Enhanced stability of mixed-ligand complexes of Ni(II), Co(II), Zn(II), and Cd(II) is presumably due to pi-bonding effects. In the stabilization of the Cu(II) mixed-ligand complex system, the Jahn-Tellar effect may play a vital role, in addition to pi-bonding effects. Fungicidal activity of N,2'-DPAHA and its binary complexes with Cu(II), Ni(II), and Co(II) was examined against Fusarium oxysporum using the inhibition zone technique. Binary complexes of Zn(II) and Cd(II) with N,2'-DPAHA and mixed-ligand complexes M(II)-Gly or Phen-N,2'-DPAHA, where M(II) = Cu(II), Ni(II), Zn(II), Co(II), and Cd(II) were screened against Alternaria alternata by slide germination technique. All mixed-ligand complexes exhibited fungicidal activity but did not improve significantly compared to binary complexes. Synergistic action of primary and secondary ligands has increased the stability of the mixed-ligand complex compared to the binary complex (1:1) of the secondary ligand (N,2'-DPAHA), and the fungicidal potential of the mixed-ligand complex involving N,2'-DPAHA as secondary ligand was not increased.  相似文献   

2.
2-Hydroxy-1-naphthaldehyde derived sulfonamides and their first row d-transition metal chelates [cobalt (II), copper (II), nickel (II) and zinc (II)] have been synthesized and characterized. The nature of bonding and structure of all the compounds have been deduced from elemental analyses, infrared, 1H NMR, 13C NMR, mass spectrometry, electronic spectra, magnetic susceptibility and conductivity measurements. An octahedral geometry has been suggested for all the complexes. The metal complexes were screened for their antibacterial and antifungal activities on different species of pathogenic bacteria and fungi and their biopotency has been discussed. The results of these studies revealed that all compounds showed moderate to significant antibacterial activity against all bacterial strains and good antifungal activity against various fungal strains. In-vitro cytotoxic properties of all the compounds against Artemia salina was also studies by brine shrimp bioassay.  相似文献   

3.
Cu(II), Ni(II), Co(II), and Zn(II) chelates with two heterocyclic imines derived from 2-furylglyoxal-2(1)-aminothiophenol (FGATP) and 2-thiophenylglyoxal-anthranilicacid (TGAA) were synthesized. Elemental analysis, molar conductance, magnetic measurements and IR and electronic spectral data were explored to elucidate their probable structures. Different crystal field parameters were also calculated to ascertain the geometry of the resulting chelates. All the ligands and their metal chelates were screened, in vitro, for their antimicrobial activity against two bacteria: S. aureus and E. coli and two fungi, viz: A. niger and C. albicans. The in vitro cytotoxic activity of all the compounds was also assessed.  相似文献   

4.
A series of substituted 2,2′-bipyridine derivatives was prepared using the Kröhnke reaction and alkylation of 4,4′-dimethyl-2,2′-bipyridine. These compounds were screened for fungicidal activity against 9 plant diseases. 5-Phenyl-2,2′-bipyridine exhibited strong preventative and curative fungicidal activity against wheat powdery mildew (Erisyphe graminis) and wheat leaf rust (Puccinia recondita).  相似文献   

5.
Nicotinic acid derived Schiff bases and their transition metal [cobalt(II), nickel(II) and zinc(II)] complexes have been prepared and characterized by physical, spectral and analytical data. The Schiff bases act as deprotonated tridentate ligands for the complexation of the above mentioned metal ions. These complexes, possessing the general formula [M(L)2] [where M = Co(II), Ni(II) and Zn(II) and L = HL1-HL4] showed an octahedral geometry of the metal ions. For determining the effect of metal ions upon chelation, the Schiff bases and their complexes have been screened for antibacterial activity against several pathogenic strains of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The new metal derivatives reported here were more bactericidal against one or more bacterial species as compared to the uncomplexed Schiff bases.  相似文献   

6.
2-Amino-1,3,4-thiadiazole undergoes a condensation reaction with furane-, thiophene- and pyrrole-2-carboxaldehyde to form tridentate NNO, NNS and NNN donor Schiff bases. These Schiff bases were further used to obtain complexes of the type [M(L)2]X, where M = Co(II), Cu(II), Ni(II) or Zn(II), L = L1, L2 or L3 and X = Cl2. The new compounds described here have been characterized by their physical, spectral and analytical data, and have been screened for antibacterial activity against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antibacterial potency of the Schiff bases increased upon chelation/complexation in comparison to the uncomplexed Schiff bases against the tested bacterial species thus, opening new approaches to find new ways in the fight against antibiotic-resistant strains.  相似文献   

7.
Azo-Schiff base ligand (N′-((E)-2-hydroxy-5-((E)-(2-hydroxyphenyl)diazenyl)benzylidene)nicotinohydrazide) and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) chelates were prepared and elucidated. The geometrical structures of the prepared chelates were characterized by several spectroanalytical techniques and thermogravimetric analysis. The obtained data revealed that the chelates have (1M:1L), (1M:2L), (1M:3L), and (1M:4L) molar ratios. The infrared spectra displayed that the H2L ligand behaves in a pentacoordinate fashion in chelates of Mn(II), Ni(II), and Cu(II) ions. However, in Zn(II) and Pd(II) chelates, the ligand is coordinated as a tetradentate species (NONO) through nitrogen atoms of azomethine and azo groups as well as oxygen atoms of phenolic hydroxy, and carbonyl groups. Besides, it was concluded that the oxygen atoms of carbonyl and hydroxy groups along with the azomethine nitrogen atom of the ligand are bounded with Co(II) ion in metal chelate ( 2 ). According to the measured molar conductance values, the chelates of Cu(II), Zn(II), and Pd(II) are weak electrolytes, but Mn(II), Co(II), and Ni(II) chelates are ionic. The azo-Schiff base ligand and its prepared metal chelates were tested for their antioxidant and antibacterial properties. The Ni(II) chelate was found to be considered an effective antioxidant agent. In addition, the available antibacterial data suggest that the Ni(II) and Co(II) chelates may be employed as inhibitor agents against Proteus vulgaris, Escherichia coli, and Bacillus subtilis bacteria. Furthermore, the data showed that, in comparison to the ligand and other metal chelates, copper(II) chelate (4) exhibited higher action against Bacillus subtilis bacteria.  相似文献   

8.
2-Amino-1,3,4-thiadiazole undergoes a condensation reaction with furane-, thiophene- and pyrrole-2-carboxaldehyde to form tridentate NNO, NNS and NNN donor Schiff bases. These Schiff bases were further used to obtain complexes of the type [M(L) 2] X, where M=Co(II), Cu(II), Ni(II) or Zn(II), L=L 1, L 2 or L 3 and X=Cl 2. The new compounds described here have been characterized by their physical, spectral and analytical data, and have been screened for antibacterial activity against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antibacterial potency of the Schiff bases increased upon chelation/complexation in comparison to the uncomplexed Schiff bases against the tested bacterial species thus, opening new approaches to find new ways in the fight against antibiotic-resistant strains.  相似文献   

9.
Schiff bases derived from salicylaldehyde and 2-substituted aniline and their metal chelates with Cu(II), Ni(II), and Co(II) ions were synthesized and screened for the antiinflammatory and antiulcer activity. The compound salicylidene anthranilic acid (SAA) was found to possess the antiinflammatory and antiulcer activity. The copper complexes showed an increased antiulcer activity. The SAA is perhaps acting by influencing prostaglandin biosynthesis.  相似文献   

10.
N-pyrimidino benzamide-2-carboxylic acid (NPBCA) and its Cu(II), Ni(II), Co(II), Zn(II), and Mn(II) chelates have been synthesized and characterized by using elemental analyses, molar conductance, molecular weight determination, magnetic moment, infrared, and electronic spectra. Antifungal activity of the synthesized compounds has been screened on common fungi, viz., Aspergillus niger, Aspergillus nidulense, and Candida albicans at 28 degrees C and antibacterial activity has been observed on gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria at 37 degrees C. Anti-inflammatory and ulcerogenic potential of the synthesized compounds have been discussed.  相似文献   

11.
Complexes of Mn(II), Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Pt(II) with 2,6-diacetylpyridine bis(N4-azacyclic thiosemicarbazones), abbreviated as H2L, have been prepared and characterized by elemental analysis, molar conductance, magnetic moments (300-78 K) and spectral studies. On the basis of these studies, a distorted six-coordinate structure for Fe(L)Cl and a distorted five-coordinate structure for M(L) (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), or Pt(II] are suggested. The ligands undergo deprotonation and appear to coordinate through the thione sulphur, the imine nitrogen and pyridyl nitrogen. All the ligands and metal complexes were screened for their antitumor activity against P 388 lymphocytic leukemia test system in mice, and it was found that a few of them possess significant activity at the dosages used.  相似文献   

12.
2-Hydroxy-1-naphthaldehyde derived sulfonamides and their first row d-transition metal chelates [cobalt (II), copper (II), nickel (II) and zinc (II)] have been synthesized and characterized. The nature of bonding and structure of all the compounds have been deduced from elemental analyses, infrared, 1H NMR, 13C NMR, mass spectrometry, electronic spectra, magnetic susceptibility and conductivity measurements. An octahedral geometry has been suggested for all the complexes. The metal complexes were screened for their antibacterial and antifungal activities on different species of pathogenic bacteria and fungi and their biopotency has been discussed. The results of these studies revealed that all compounds showed moderate to significant antibacterial activity against all bacterial strains and good antifungal activity against various fungal strains. In-vitro cytotoxic properties of all the compounds against Artemia salina was also studies by brine shrimp bioassay.  相似文献   

13.
Isoflavone metal chelates are of interest as isoflavones act as oestrogen mimics. Metal interactions may enhance isoflavones biological properties so understanding isoflavone metal chelation is important for the commercial application of isoflavones. This work aimed to determine if isoflavones, daidzein (4',7-dihydroxyisoflavone) and genistein (4',5,7-trihydroxyisoflavone) could chelate with metals as isoflavone chelates. Biochanin A (4'-methoxy-5,7-dihydroxyisoflavone) was also examined for it's ability to chelate with Cu(II) and Fe(III). This study found daidzein does not chelate with Cu(II) and Fe(III) but genistein and biochanin A chelate with a 1:2 M/L stoichiometry. The copper and iron chelates were synthesised and characterised by elemental analysis, FTIR, thermogravimetric analysis (TGA) and electrospray ionisation mass spectrometry (ESI-MS). These studies indicated a 1:2 M/L stoichiometry and suggested the isoflavones bind with the metals at the 4-keto and the 5-OH site. 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition assays showed that copper isoflavone chelates have higher antioxidant activity than free isoflavones while the iron isoflavone chelates showed pro-oxidant activity compared to the free isoflavone. Synergistic DPPH studies with 0.02 mM ascorbic acid revealed copper chelates exhibit reduced antioxidant activity versus free isoflavones whereas the iron chelates showed lower pro-oxidant activity except at 1.0 mM.  相似文献   

14.
The testicular sperm density, sperm morphology, sperm motility, density of cauda epididymis spermatozoa and fertility in mating trials and biochemical parameters of reproductive organs have been examined and discussed for [Mn(N(4)MacL(n))(NO(3))(2)] (where N(4)MacL(n) represents the tetraazamacrocyclic ligand molecule with n=1-4) type of complexes. An attempt also has been made to correlate the structural aspects of the compounds with their anti-inflammatory activity. The 14-18 membered tetraamide macrocyclic ligands N(4)L(1)-N(4)L(4) used during these investigations have been prepared by the condensation of 1,2-diaminoethane or 1,3-diaminopropane with malonic or succinic acid in the presence of condensing reagents, dicyclohexylcarbodiimide and 4-dimethylaminopyridine. On reduction, these macrocyclic ligands give a new series of tetraazamacrocyles [N(4)MacL(n)] and their complexes with manganese(II) nitrate. The ligands and their complexes were characterized by elemental analyses, molecular weight determinations, infrared, electronic, mass and X-ray structural analyses. An octahedral geometry for these complexes has been confirmed by spectral studies. On the basis of the chemical composition, the representation of the complexes as [Mn(N(4)MacL(n))(NO(3))(2)] has been established. The ligands and their complexes have been screened in vitro against a number of pathogenic fungi and bacteria to assess their growth inhibiting potential.  相似文献   

15.
The water soluble polymer-copper(II) complex samples, [Cu(bpy)(2)(BPEI)]Cl(2).4H(2)O (bpy=2,2'-bipyridine, BPEI=branched polyethyleneimine), with varying degrees of copper(II) chelates content in the polymer chain, were prepared by ligand substitution method in water-ethanol medium and characterized by Infra-red, UV-visible, EPR spectral and elemental analysis methods. The interaction of these polymer-copper(II)-bipyridyl complex samples with calf thymus DNA has been explored by using electronic absorption spectroscopy, emission spectroscopy and gel electrophoresis techniques. The observed changes in the physico-chemical features of the polymer-copper(II) complex on binding to DNA suggest that the complex binds to DNA with electrostatic interaction mode. A sample of polymer-copper(II) complex was tested for its antibacterial and antifungal activity and it was found to have good antibacterial and antifungal activities.  相似文献   

16.
The binary and ternary systems 2,2'-bipyridine (bpy)-M(II)-NO2psglyH2 (M(II) = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II); NO2psglyH2 = N-(2-nitrophenylsulfonyl)glycine) were investigated in aqueous solution by means of potentiometry and electron spectroscopy in order to identify the type, number and stability of the complex species as a function of pH and metal-to-ligand molar ratio. The aim is to evaluate the effect of a substituent on the phenyl ring of the N-sulfonyl amino acids on their coordination properties. The prevailing species in the binary systems is the [ML] (M = Co(II), Ni(II), Cu(II), Cd(II), Pb(II)) where the amino acid molecule is in the dianionic form and coordinates the metal ion through both carboxylic oxygen and deprotonated sulfonamidic nitrogen, while in the Mn(II)- and Zn(II)-containing binary system the only complex species found are those with the amino acid in the monoanionic form. In the ternary 2,2'-bipyridine-containing systems the chelating coordination mode of the dianionic amino acid is maintained with M(II) = Co(II), Ni(II), Cu(II), Cd(II), Pb(II) and the addition of the aromatic base also enables the Zn(II) ion to substitute for the sulfonamide nitrogen-bound hydrogen of NO2psglyH2.  相似文献   

17.
Reaction of 2-acetamidobenzaldehyde with 2-amino-, 2-amino-4-methyl-, 2-amino-4-methoxy-, 2-amino-4-chloro-, 2-amino-6-nitro- and 2-amino-6-methylsufonylbenzothiazole afforded a series of Schiff bases. These compounds have been used for complexation reactions to obtain Zn(II) chelates having the same metal ion but different anions of the type [Zn(L)2]Xn [L = Schiff base derivative, X = SO4, NO3, C2O4 and CH3CO2 and n = 1 or 2] These complexes (Table I) have been characterized by physical, spectral, and analytical data. The Schiff bases act tridentately and their metal complexes were proposed to possess an octahedral geometry. To evaluate the antibacterial role of the anion, these compounds have been screened for antibacterial properties against pathogenic strains such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa.  相似文献   

18.
A series of mononuclear Ru(II) complexes of the type [Ru(M)2(U)]2+, where M = 2,2'-bipyridine/1,10-phenanthroline and U = tpl (Ru1), 4-Cl-tpl (Ru2), 4-CH3-tpl (Ru3), 4-CH3O-tpl (Ru4), and 4-NO2-tpl (Ru5), -pai (Ru6), where tpl = thiopicolinanilide and pai = 2-phenyl-azo-imidazole, have been prepared and characterized by IR, UV-Vis, 1H NMR, 13C-NMR, FAB-Mass spectrophotometer, and elemental analysis. The complexes display metal-ligand charge transfer (MLCT) transitions in the visible region. The title complexes were subjected to in vivo anticancer activity tests against a transplantable murine tumor cell line, Ehrlich's ascitic carcinoma (EAC) and in vitro antibacterial activity against Gram positive and Gram negative microorganisms. Ru1-Ru6 were found to increase the life span of the tumor hosts by 19-52%, and decreased tumor volume and viable ascitic cell count. The results of the present study clearly demonstrated the tumor inhibitory activity of the ruthenium chelates against transplantable murine tumor cell line. The treatment with ruthenium complexes could be secondary to tumor regression or due to the action of the compounds itself. The significant antibacterial activity was observed for Ru1-Ru4 against microorganisms like Vibrio cholera 865, Staphylococcus aureus 6571, and Shigella flexneri as compared to that of standard drug chloramphenical. Ru5 showed moderate activity against S. aureus 8530. However, all the complexes fail to show significant antibacterial activity against V. cholera 14033 and Shigella sonnai.  相似文献   

19.
Some aerobic organisms devoid of SOD use Mn2+ chelates to scavenge the O2- radical. Since the Mn2+-bis(lactato)diaquo complex is known as having a high SOD-like activity, we prepared manganese(II) complexes with triazamacrocyclic ligands bearing L-lactate-like functions in order to obtain model compounds able to disproportionate the superoxide radical. Thus, two macrocyclic ligands, N,N',N"-tris[2(S)-hydroxybutyric acid]-1,4,7-triazacyclononane, L1, and N,N',N"-tris[2(S)-hydroxybutyric acid]-1,5,9-triazacyclododecane, L2, were prepared and their capacity to retain the Mn2+ ion in aqueous solution was determined from potentiometric experiments. The chelating properties in aqueous solution of each ligand towards Co2+, Cu2+ and Zn2+ ions were also determined. L1 forms complexes with Mn2+, Co2+, Cu2+ and Zn2+ ions with stability constants of 8.33(5), 15.78(5), 17.65(3) and 14.32(1), respectively. L2 forms complexes with Cu2+ and Zn2+ ions with stability constants of 10.67(1) and 6.98(3), respectively. But the constants related to the Mn2+ and Co2+ complexes were too low to be determined by the method used. The stability constants values calculated for L2 complexes are significantly lower than those for the corresponding complexes of L1. Additional spectroscopic measurements were carried out on the Mn2+-L1 system. The electronic spectrum of this system showed a pH-dependence that may be consistent with the formation of hydroxo-species as the ESR spectra recorded at 120 K did not show oxidation of the Mn2+ ion in the pH range studied. The superoxide-scavenging activity of the manganese(II)-L1 complex was investigated using the cytochrome c assay. The Mn2+-L1 system showed an IC50 value of 1.7 microM which indicates that it appears as a potent SOD mimic.  相似文献   

20.
T. Tang  K. S. Rajan    N. Grecz 《Biophysical journal》1968,8(12):1458-1474
The high resistance of bacterial spores to heat has been repeatedly postulated to be due to stabilization of spore biopolymers by metal chelate compounds. Binding of calcium dipicolinic acid (Ca(II)-DPA) with spore proteins and amino acids has been discussed in the literature, but equilibrium data are generally lacking. By means of potentiometric pH titrations at 25 degrees C and an ionic strength of 1.0 (KNO(3)), the formation of Ca(II)-DPA (1:1 and 1:2) chelates and the interactions of Ca(II)-DPA chelate with a mole of each of three typical amino acids viz., cysteine, alanine, and glycine has been investigated. Analysis of the potentiometric data indicates that calcium and DPA forms 1:1 and 1:2 chelates with log K(ML1) = 4.39 +/- 0.01 and log K(ML2) = 2.25 +/- 0.01. In the presence of an equimolar amount of each of the amino acids under consideration, the Ca(II)-DPA chelate forms mixed ligand (ternary) chelate yielding the following stepwise stability constants: log K(1) = 4.17 +/- 0.01, log K(2) = 0.78 +/- 0.01 for cysteine, log K(1) = 4.06 +/- 0.01, log K(2) = 0.65 +/- 0.01 for alanine, and log K(1) = 4.30 +/- 0.02, log K(2) = 0.11 +/- 0.01 for glycine. Methods for calculating the stability constants of the mixed ligand system have been developed. On the basis of the potentiometric equilibrium data, possible structures for the various calcium chelate species are discussed. The data suggest that the differences in heat resistance of various strains of bacterial spores may conceivably be related to the differences in composition and stability of coordination complexes in the spore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号