首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P H Cleat  R T Hay 《The EMBO journal》1989,8(6):1841-1848
The DNA-protein and protein-protein interactions proposed for the stability of nucleoprotein complexes at the origin of replication in prokaryotes are also thought to impart regulatory precision in eukaryotic DNA replication. This type of specificity can be observed, for example, during adenovirus DNA replication where efficient initiation requires that nuclear factor I (NFI) binds to the origin of DNA replication. Addition of purified NFI stimulates the initiation of adenovirus DNA replication in vitro in a reaction that is dependent on the concentration of the adenovirus DNA binding protein (DBP). However, the molecular basis for the synergistic action of NFI and DBP during replication is at present unknown. We report here that DBP increases the affinity of NFI for its binding site in the replication origin. DBP did not, however, increase the affinity of another eukaryotic sequence-specific DNA binding protein, EBP1, for its recognition site. Other single-stranded DNA binding proteins could not substitute for DBP in increasing NFI affinity for its binding site. In addition, DBP was found to alter the binding kinetics of NFI, both by increasing the rate of association and decreasing the rate of dissociation of NFI with the DNA template. The co-operativity between NFI and DBP was also demonstrated on another DNA template, a human NFI site (FIB2), suggesting that this interaction is of general occurrence and not restricted to the adenovirus origin of replication.  相似文献   

2.
The consequences of enzyme and template interaction were examined by several independent methods in the replication reactions catalyzed by calf thymus low molecular weight DNA polymerase, calf thymus high molecular weight DNA polymerase, and Eacherichia coli polymerase I. All methods used support a distributive, rather than processive, mechanism for enzyme in the replication of homopolymer templates in vitro. First, addition of an excess of initiated poly(dC) template to an ongoing poly(dA) replication reaction results in immediate cessation of dTTP polymerization. Second, the kinetics of monomer and initiator incorporation in reactions where a large number of initiated template molecules are available to each enzyme molecule show early incorporation of all initiators followed by simultaneous replication of the total population of template molecules. Third, alkaline sucrose gradient analysis of the products formed at various stages during replication show simultaneous growth in product chain lengths. Fourth, analysis of products formed when an average of one to two nucleotides are added at the end of the growing chain, in reactions having a molecular ratio of template to enzyme of about 900, show that the enzyme can dissociate from the replicating template after a single addition. Increasing the ionic strength of the reaction mixture, to decrease the secondary interactions between the enzyme and the template, results in nearly random interaction of the enzyme and the template. The results from this study suggest that translocation of template chain during replication is not an obligatory function of purified DNA polymerases. The possible involvement of other proteins required for DNA replication in vivo in the interaction of DNA polymerase and DNA is discussed.  相似文献   

3.
Template-directed replication is known to obey a parabolic growth law due to product inhibition (Sievers & Von Kiedrowski 1994 Nature 369, 221; Lee et al. 1996 Nature 382, 525; Varga & Szathmáry 1997 Bull. Math. Biol. 59, 1145). We investigate a template-directed replication with a coupled template catalysed lipid aggregate production as a model of a minimal protocell and show analytically that the autocatalytic template-container feedback ensures balanced exponential replication kinetics; both the genes and the container grow exponentially with the same exponent. The parabolic gene replication does not limit the protocellular growth, and a detailed stoichiometric control of the individual protocell components is not necessary to ensure a balanced gene-container growth as conjectured by various authors (Gánti 2004 Chemoton theory). Our analysis also suggests that the exponential growth of most modern biological systems emerges from the inherent spatial quality of the container replication process as we show analytically how the internal gene and metabolic kinetics determine the cell population's generation time and not the growth law (Burdett & Kirkwood 1983 J. Theor. Biol. 103, 11-20; Novak et al. 1998 Biophys. Chem. 72, 185-200; Tyson et al. 2003 Curr. Opin. Cell Biol. 15, 221-231). Previous extensive replication reaction kinetic studies have mainly focused on template replication and have not included a coupling to metabolic container dynamics (Stadler et al. 2000 Bull. Math. Biol. 62, 1061-1086; Stadler & Stadler 2003 Adv. Comp. Syst. 6, 47). The reported results extend these investigations. Finally, the coordinated exponential gene-container growth law stemming from catalysis is an encouraging circumstance for the many experimental groups currently engaged in assembling self-replicating minimal artificial cells (Szostak 2001 et al. Nature 409, 387-390; Pohorille & Deamer 2002 Trends Biotech. 20 123-128; Rasmussen et al. 2004 Science 303, 963-965; Szathma ry 2005 Nature 433, 469-470; Luisi et al. 2006 Naturwissenschaften 93, 1-13).  相似文献   

4.
We propose a reference model of the kinetics of a viral RNA-dependent RNA polymerase (vRdRp) activities and its regulation during infection of eucaryotic cells. After measles virus infects a cell, mRNAs from all genes immediately start to accumulate linearly over the first 5 to 6 h and then exponentially until approximately 24 h. The change from a linear to an exponential accumulation correlates with de novo synthesis of vRdRp from the incoming template. Expression of the virus nucleoprotein (N) prior to infection shifts the balance in favor of replication. Conversely, inhibition of protein synthesis by cycloheximide favors the latter. The in vivo elongation speed of the viral polymerase is approximately 3 nucleotides/s. A similar profile with fivefold-slower kinetics can be obtained using a recombinant virus expressing a structurally altered polymerase. Finally, virions contain only encapsidated genomic, antigenomic, and 5'-end abortive replication fragment RNAs.  相似文献   

5.
Bacteriophage PRD1 replicates its DNA by means of a protein-primed replication mechanism. Compared to Mg2+, the use of Mn2+ as the metal activator of the phage DNA polymerase results in a great stimulation of the initiation reaction. The molecular basis of the observed stimulatory effect is an increase in the velocity of the reaction. The phage DNA polymerase is also able to catalyze the formation of the initiation complex in the absence of DNA template. Although the presence of Mn2+ does not affect either the polymerization activity or the processivity of the DNA polymerase, this metal is unable to activate the overall replication of the phage genome. This can be explained by a deleterious effect of Mn2+ on the 3'-5'-exonucleolytic and/or the strand-displacement activity, the latter being an intrinsic function of the viral DNA polymerase required for protein-primed DNA replication.  相似文献   

6.
The T4 bacteriophage dda protein is a DNA-dependent ATPase and DNA helicase that is the product of an apparently nonessential T4 gene. We have examined its effects on in vitro DNA synthesis catalyzed by a purified, multienzyme T4 DNA replication system. When DNA synthesis is catalyzed by the T4 DNA polymerase on a single-stranded DNA template, the addition of the dda protein is without effect whether or not other replication proteins are present. In contrast, on a double-stranded DNA template, where a mixture of the DNA polymerase, its accessory proteins, and the gene 32 protein is required, the dda protein greatly stimulates DNA synthesis. The dda protein exerts this effect by speeding up the rate of replication fork movement; in this respect, it acts identically with the other DNA helicase in the T4 replication system, the T4 gene 41 protein. However, whereas a 41 protein molecule remains bound to the same replication fork for a prolonged period, the dda protein seems to be continually dissociating from the replication fork and rebinding to it as the fork moves. Some gene 32 protein is required to observe DNA synthesis on a double-stranded DNA template, even in the presence of the dda protein. However, there is a direct competition between this helix-destabilizing protein and the dda protein for binding to single-stranded DNA, causing the rate of replication fork movement to decrease at a high ratio of gene 32 protein to dda protein. As shown elsewhere, the dda protein becomes absolutely required for in vitro DNA synthesis when E. coli RNA polymerase molecules are bound to the DNA template, because these molecules otherwise stop fork movement (Bedinger, P., Hochstrasser, M., Jongeneel, C.V., and Alberts, B. M. (1983) Cell 34, 115-123).  相似文献   

7.
Chao L  Rang CU  Wong LE 《Journal of virology》2002,76(7):3276-3281
When a parent virus replicates inside its host, it must first use its own genome as the template for replication. However, once progeny genomes are produced, the progeny can in turn act as templates. Depending on whether the progeny genomes become templates, the distribution of mutants produced by an infection varies greatly. While information on the distribution is important for many population genetic models, it is also useful for inferring the replication mode of a virus. We have analyzed the distribution of mutants emerging from single bursts in the RNA bacteriophage phi6 and find that the distribution closely matches a Poisson distribution. The match suggests that replication in this bacteriophage is effectively by a stamping machine model in which the parental genome is the main template used for replication. However, because the distribution deviates slightly from a Poisson distribution, the stamping machine is not perfect and some progeny genomes must replicate. By fitting our data to a replication model in which the progeny genomes become replicative at a given rate or probability per round of replication, we estimated the rate to be very low and on the on the order of 10(-4). We discuss whether different replication modes may confer an adaptive advantage to viruses.  相似文献   

8.
Kinetics of RNA replication   总被引:4,自引:0,他引:4  
  相似文献   

9.
Lesions in the template DNA strand block the progression of the replication fork. In the yeast Saccharomyces cerevisiae, replication through DNA lesions is mediated by different Rad6-Rad18-dependent means, which include translesion synthesis and a Rad5-dependent postreplicational repair pathway that repairs the discontinuities that form in the DNA synthesized from damaged templates. Although translesion synthesis is well characterized, little is known about the mechanisms that modulate Rad5-dependent postreplicational repair. Here we show that yeast Rad5 has a DNA helicase activity that is specialized for replication fork regression. On model replication fork structures, Rad5 concertedly unwinds and anneals the nascent and the parental strands without exposing extended single-stranded regions. These observations provide insight into the mechanism of postreplicational repair in which Rad5 action promotes template switching for error-free damage bypass.  相似文献   

10.
Bacteriophages φ29 and Nf from Bacillus subtilis start replication of their linear genomes at both ends using a protein-primed mechanism by means of which the DNA polymerase initiates replication by adding dAMP to the terminal protein, this insertion being directed by the second and third 3′ terminal thymine of the template strand, respectively. In this work, we have obtained evidences about the role of the 3′ terminal base during the initiation steps of φ29 and Nf genome replication. The results indicate that the absence of the 3′ terminal base modifies the initiation position carried out by φ29 DNA polymerase in such a way that now the third position of the template, instead of the second one, guides the incorporation of the initiating nucleotide. In the case of Nf, although the lack of the 3′ terminal base has no effect on the initiation position, its absence impairs further elongation of the TP-dAMP initiation product. The results show the essential role of the 3′ terminal base in guaranteeing the correct positioning of replication origins at the polymerization active site to allow accurate initiation of replication and further elongation.  相似文献   

11.
N6-methyladenine (6mA), as a newly reported epigenetic marker, plays significant roles in regulation of various biological processes in eukaryotes. However, the effect of 6mA on human DNA replication remain elusive. In this work, we used Y-family human DNA polymerase η as a model to investigate the kinetics of bypass of 6mA by hPol η. We found 6mA and its intermediate hypoxanthine (I) on template partially inhibited DNA replication by hPol η. dTMP incorporation opposite 6mA and dCMP incorporation opposite I can be considered as correct incorporation. However, both 6mA and I reduced correct incorporation efficiency, next-base extension efficiency, and the priority in extension beyond correct base pair. Both dTMP incorporation opposite 6mA and dCTP opposite I showed fast burst phases. However, 6mA and I reduced the burst incorporation rates (kpol) and increased the dissociation constant (Kd,dNTP), compared with that of dTMP incorporation opposite unmodified A. Biophysical binding assays revealed that both 6mA and I on template reduced the binding affinity of hPol η to DNA in binary or ternary complex compared with unmodified A. All the results explain the inhibition effects of 6mA and I on DNA replication by hPol η, providing new insight in the effects of epigenetically modified 6mA on human DNA replication.  相似文献   

12.
Many types of DNA lesions in template strands block DNA replication and lead to a stalling of replication forks. This block can be overcome (bypassed) by special DNA polymerases (for example, DNA polymerase eta, Pol eta) that perform translesion synthesis on damaged template DNA. The phenomenon of completing DNA replication, while DNA lesions remain in the template strands, has been named post-replication repair (PRR). In yeast Saccharomyces cerevisiae, PRR includes mutagenic and error-free pathways under the regulation of the RAD6/RAD18 complex, which induces ubiquitylation of PCNA. In mammalian cells, Pol eta accumulates in replication foci but the mechanism of this accumulation is not known. Pol eta possesses a conserved PCNA binding motif at the C terminal and phosphorylation of this motif might be essential for its interaction with PCNA. We have shown previously that staurosporine, an inhibitor of protein kinases, inhibits PRR in human cells. In this study we examined whether the accumulation of Pol eta in replication foci after DNA damage is dependent on phosphorylation of the PCNA binding motif. We also studied DNA damage-induced phosphorylation of GFP-tagged human Rad18 (hRad18) and its accumulation in replication foci. Our data indicate that (1) Pol eta is not phosphorylated in response to UV irradiation or MMS treatment, but its diffusional mobility is slightly decreased, and (2) hRad18 accumulates in MMS-treated cells, and considerable amount of the protein co-localizes with detergent insoluble PCNA in replication foci; these responses are sensitive to staurosporine. Our data suggest that hRad18 phosphorylation is the staurosporine-sensitive PRR step.  相似文献   

13.
In addition to its central role as a template for replication and translation, the viral plus-strand RNA genome also has nontemplate functions, such as recruitment to the site of replication and assembly of the viral replicase, activities that are mediated by cis-acting RNA elements within viral genomes. Two noncontiguous RNA elements, RII(+)-SL (located internally in the tombusvirus genome) and RIV (located at the 3'-terminus), are involved in template recruitment into replication and replicase assembly; however, the importance of each of these RNA elements for these two distinct functions is not fully elucidated. We used an in vitro replicase assembly assay based on yeast cell extract and purified recombinant tombusvirus replication proteins to show that RII(+)-SL, in addition to its known requirement for recruitment of the plus-strand RNA into replication, is also necessary for assembly of an active viral replicase complex. Additional studies using a novel two-component RNA system revealed that the recruitment function of RII(+)-SL can be provided in trans by a separate RNA and that the replication silencer element, located within RIV, defines the template that is used for initiation of minus-strand synthesis. Collectively, this work has revealed new functions for tombusvirus cis-acting RNA elements and provided insights into the pioneering round of minus-strand synthesis.  相似文献   

14.
15.
Bacteriophage φ29 from Bacillus subtilis starts replication of its terminal protein (TP)-DNA by a protein-priming mechanism. To start replication, the DNA polymerase forms a heterodimer with a free TP that recognizes the replication origins, placed at both 5′ ends of the linear chromosome, and initiates replication using as primer the OH-group of Ser-232 of the TP. The initiation of φ29 TP-DNA replication mainly occurs opposite the second nucleotide at the 3′ end of the template. Earlier analyses of the template position that directs the initiation reaction were performed using single-stranded and double-stranded oligonucleotides containing the replication origin sequence without the parental TP. Here, we show that the parental TP has no influence in the determination of the nucleotide used as template in the initiation reaction. Previous studies showed that the priming domain of the primer TP determines the template position used for initiation. The results obtained here using mutant TPs at the priming loop where Ser-232 is located indicate that the aromatic residue Phe-230 is one of the determinants that allows the positioning of the penultimate nucleotide at the polymerization active site to direct insertion of the initiator dAMP during the initiation reaction. The role of Phe-230 in limiting the internalization of the template strand in the polymerization active site is discussed.  相似文献   

16.
Pryor JM  Washington MT 《DNA Repair》2011,10(11):1138-1144
Rev1 is a eukaryotic DNA polymerase that rescues replication forks stalled at sites of DNA damage by inserting nucleotides opposite the damaged template bases. Yeast genetic studies suggest that Rev1 plays an important role in rescuing replication forks stalled at one of the most common forms of DNA damage, an abasic site; however, steady state kinetic studies suggest that an abasic site acts as a significant block to nucleotide incorporation by Rev1. Here we examined the pre-steady state kinetics of nucleotide incorporation by yeast Rev1 with damaged and non-damaged DNA substrates. We found that yeast Rev1 is capable of rapid nucleotide incorporation, but only a small fraction of the protein molecules possessed this robust activity. We characterized the nucleotide incorporation by the catalytically robust fraction of yeast Rev1 and found that it efficiently incorporated dCTP opposite a template abasic site under pre-steady state conditions. We conclude from these studies that the abasic site is a cognate lesion for Rev1.  相似文献   

17.
Replicators are fundamental to the origin of life and evolvability. Their survival depends on the accuracy of replication and the efficiency of growth relative to spontaneous decay. Infrabiological systems are built of two coupled autocatalytic systems, in contrast to minimal living systems that must comprise at least a metabolic subsystem, a hereditary subsystem and a boundary, serving respective functions. Some scenarios prefer to unite all these functions into one primordial system, as illustrated in the lipid world scenario, which is considered as a didactic example in detail. Experimentally produced chemical replicators grow parabolically owing to product inhibition. A selection consequence is survival of everybody. The chromatographized replicator model predicts that such replicators spreading on surfaces can be selected for higher replication rate because double strands are washed away slower than single strands from the surface. Analysis of real ribozymes suggests that the error threshold of replication is less severe by about one order of magnitude than thought previously. Surface-bound dynamics is predicted to play a crucial role also for exponential replicators: unlinked genes belonging to the same genome do not displace each other by competition, and efficient and accurate replicases can spread. The most efficient form of such useful population structure is encapsulation by reproducing vesicles. The stochastic corrector model shows how such a bag of genes can survive, and what the role of chromosome formation and intragenic recombination could be. Prebiotic and early evolution cannot be understood without the models of dynamics.  相似文献   

18.
DNA is constantly damaged by endogenous and exogenous agents. The resulting DNA lesions have the potential to halt the progression of the replisome, possibly leading to replication fork collapse. Here, we examine the effect of a noncoding DNA lesion in either leading strand template or lagging strand template on the bacteriophage T4 replisome. A damaged base in the lagging strand template does not affect the progression of the replication fork. Instead, the stalled lagging strand polymerase recycles from the lesion and initiates the synthesis of a new Okazaki fragment upstream of the damaged base. In contrast, when the replisome encounters a blocking lesion in the leading strand template, the replication fork only travels approximately 1 kb beyond the point of the DNA lesion before complete replication fork collapse. The primosome and the lagging strand polymerase remain active during this period, and an Okazaki fragment is synthesized beyond the point of the leading strand lesion. There is no evidence for a new priming event on the leading strand template. Instead, the DNA structure that is produced by the stalled replication fork is a substrate for the DNA repair helicase UvsW. UvsW catalyzes the regression of a stalled replication fork into a “chicken-foot” structure that has been postulated to be an intermediate in an error-free lesion bypass pathway.  相似文献   

19.
In vitro studies have demonstrated that linear duplex, protein-free DNA molecules containing an inverted terminal repeat (ITR) sequence of the PRD1 genome at one end can undergo replication by a protein-primed mechanism. No DNA replication was observed when the ITR sequence was deleted or was not exposed at the terminus of the template DNA. We have determined the minimal origin of replication by analyzing the template activity of various deletion derivatives. Our results showed that the terminal 20 base-pairs of ITR are required for efficient in vitro DNA replication. We have found that, within the minimal replication origin region, there are complementary sequences. A site-specific mutagenesis analysis showed that most of the point mutations in the complementary sequences markedly reduced the template activity. The analyses of the results obtained with synthetic oligonucleotides have revealed that the specificity of the replication origin is strand specific and even on a single-stranded template a particular DNA sequence including a 3'-terminal C residue is required for the initiation of PRD1 DNA replication in vitro.  相似文献   

20.
Exposure to chemical carcinogens provides a means for the enhancement of the frequency of gene amplification and for the facilitation of research into its mechanism(s). Using carcinogen-induced SV40 amplification as a model system it was shown that amplification of the viral sequences occurs via a replication-dependent mode. This process involves overactivation of the origin region and the generation of inverted repeats. Carcinogen-induced enhancement of gene amplification is triggered by cellular factors that could act in trans. An in vitro amplification system, based on extracts from carcinogen-treated cells and SV40 template sequences, was used to further characterize the amplification intermediates. The major products of overreplication in this system consist of sequences derived from the origin region. Our studies suggest that the ability to overreplicate the origin region in vitro derives from the combined action of carcinogen-induced factors that trigger overinitiation, with the inherent inability of Chinese hamster cell extracts to fully replicate large plasmid templates. The newly replicated sequences are not associated with the parental molecule and contain hairpin or stem and loop structures. Based on these findings we propose a novel replicative mechanism for DNA amplification that allows the de novo formation of hairpin structures. According to this model, an obstruction of the replication fork may cause an overturning of the DNA polymerase, followed by a template switch that leads to the use of the newly replicated strand as a template. This mode of replication results in the generation of hairpin structures which can function as precursors for the duplicated inverted repeats which are commonly observed in amplified genomes. This model is supported by our in vitro and in vivo studies. The relevance of this model for the amplification of cellular sequences is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号