首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The clonal rat rhabdomyosarcoma cell line BA-HAN-1C is composed of proliferating mononuclear cells, some of which spontaneously fuse to terminally differentiated myotube-like giant cells. Both the induction of differentiation by retinoic acid (RA) and by sodium butyrate (NaBut), as well as the inhibition of proliferation by fetal calf serum (FCS)-depleted medium uniformly resulted in the same effects. There was a significant (p less than 0.001) inhibition of proliferation and induction of cellular differentiation, as evidenced by a significant (p less than 0.05) increase in creatine kinase activity. Furthermore, after exposure to RA-supplemented or FCS-depleted medium, a significant (p less than 0.001) increase in the number of myotube-like giant cells was observed. These effects were preceded by a uniform enhancement of c-raf mRNA expression, which became evident 6 h after exposure to RA, NaBut and FCS-depleted media. C-raf mRNA expression persisted at an elevated level throughout the observation period of 5 days after exposure to RA or NaBut, whereas the increased expression of c-raf mRNA observed after FCS-depletion declined near to the basal level after only 24 h. Furthermore, a transient c-fos mRNA expression was observed 15 and 30 min after exposure to RA-supplemented and FCS-depleted medium but not after exposure to NaBut. The present results suggest a possible role of c-raf in the regulation of differentiation and proliferation of this cell line. Since all our experiments with RA, NaBut and FCS-depletion resulted in an early peak of c-raf mRNA expression, it is suggested that this early peak may be sufficient to trigger events crucial for differentiation and proliferation of BA-HAN-1C tumor cells.  相似文献   

2.
The temporal relation between the fusion of mononucleated myoblasts into multinucleated fibres and the quantitative changes in the activity of creatine kinase isoenzymes was determined in rat skeletal muscle cell cultures. The effect of actinomycin D on the isoenzyme transition was investigated. The activity of creatine kinase in cultures prior to the onset of cell fusion is predominantly of the BB type. During the phase of cell fusion, there is a manyfold increase in creatine kinase activity. This is due to the appearance or great increase in the activity of the MM isoenzyme. During this period, increase in the BB isoenzyme activity is very small. Inhibition of RNA synthesis by actinomycin D shortly before the onset of cell fusion did not prevent cell fusion and isoenzyme transition during the first 6 h following application of the drug.  相似文献   

3.
J D Gearhart  B Mintz 《Cell》1975,6(1):61-66
Multipotential mouse teratocarcinoma cells in embryoid bodies were explanted on plastic or collagen substrates. Various modes of cell determination, including myogenesis, occurred. The predominant avenue of differentiation soon became myogenesis: many multinucleated myotubes formed and yielded an extensive network of skeletal muscle fibers. The process does not proceed to normal completion, as the fibers have a paucity of striations and are not contractile. Activities of several enzymes ordinarily associated with muscle differentiation were examined. Acetylcholinesterase activity increases, especially during myotube formation, as in normal myogenesis. However, creatine kinase activity rises during myotube formation and then drops abnormally, and myokinase activity fails to increase appreciably. The fetal isozymic form of creatine kinase is expressed in the cultures, although well differentiated solid tumors taken from mice show attainment of the adult muscle isozyme type if skeletal muscle is demonstrably present. The results are consistent with the interpretation that coordinately regulated changes in gene expressions controlling these functions may be required for later stages of myogenesis.  相似文献   

4.
A myogenic cell line with altered serum requirements for differentiation   总被引:19,自引:0,他引:19  
Dfferentiation properties of a cell line, L84, which originated from a non-fusing clone isolated from the myogenic line L8, are described. In nutritional medium supplemented with 10% serum used routinely with L8 cells, L84 cells continue to proliferate to very high densities and fail to form multinucleated fibres. When grown in medium supplemented with 2% horse serum of 2% horse serum plus 0.1% microng/ml insulin, L84 cells behave very similarly to L8 cells grown in medium supplemented with 10% horse serum: when the cultures reach confluency, proliferation decreases and cells start to fuse and form a dense network of fibres. Large increases in creatine kinase activity and synthesis of myosin are associated with cell fusion. Under conditions in which L84 cells do not fuse the increase in these synthetic activities is not observed, even after extremely high cell densities are reached. The data show that L84 cells retain the programme for their differentiation into muscle fibres. The difference between L84 and its progenitor line L8 lies in the sensitivity to the environmental conditions which trigger the expression of this programme.  相似文献   

5.
1. Growth and viability of in vitro cultured Ehrlich ascites tumor cells are not significantly impaired by exogenous creatine up to 40mM. Retardation of cell growth by higher concentrations depends on cell density. 2. Ehrlich cells grown in the presence of high concentrations of creatine accumulate creatine phosphate to high levels (up to 23 nmol/10(6) cells in the presence of 40mM creatine). 3. A nearly complete interruption of glycolytic ATP production or inhibition of the oxidative ATP synthesis reduces the maximal creatine to about 40-50% of controls. 4. Studies on the intracellular distribution of creatine kinase have shown, that the enzyme is only associated with the mitochondrial fraction. Titration of isolated mitochondria with digitonin revealed that the activity is located in the inter-membrane space and partly bound to the outer site of the inner membrane. 5. By growth of Ehrlich cells in creatine-free medium it is possible to obtain "creatine phosphate-depleted" cells (creatine phosphate less than 10% of controls). The growth of creatine phosphate-depleted cells as compared to controls is significantly reduced under energetic stress situations. The protein synthesis of these cells after an energetic stress (lack of glucose and oxygen) is significantly reduced as compared to creatine phosphate containing cells. 6. It is concluded that in these cells creatine kinase/creatine phosphate is a thermodynamic buffer system and not part of an energy shuttle as is postulated for muscle cells.  相似文献   

6.
Myoblasts from L6 line, after a period of cell division, undergo differentiation into large multinucleated syncitia in 8–9 days. Butyrate was added for 24 hours at various times of culture. In all samples growth was strongly inhibited. After removal of butyrate, growth continued at the same rate for 2 days, afterwards the growth rate became the same as in control cells. Morphological and biochemical differentiations, estimated by creatine phosphokinase assay, occur with a 1–3 day delay according to the time of addition of butyrate, when compared to untreated cells. Only the M form of creatine phosphokinase was present in butyrate-treated cells as in untreated myoblasts.  相似文献   

7.
Using a quantitative enzyme immunoassay, Thy-1 antigen expressed by a rat myoid cell line R615B2 was detected mainly on the cell surface at a single cell stage, whereas at the stage of forming myotubes, Thy-1 was found predominantly in the cytoplasm. The muscle specific creatine kinase activity also increased in association with the shift of Thy-1 from the cell surface to the cytoplasm, suggesting biological significance of Thy-1 redistribution in muscle differentiation from single cells to multinucleated cells.  相似文献   

8.
9.
The effects of aphidicolin, a specific inhibitor of DNA polymerase α, on cell growth, DNA synthesis and myogenic differentiation in the human alveolar rhabdomyosarcoma cell line KFR were studied. The treatment with aphidicolin at 5 × 10−6 M concentration, which completely inhibited DNA synthesis and cell growth, induced morphological differentiation of small mononuclear cells to elongated, multinucleated (myotube-like) structures. The morphological differentiation was accompanied by the expression of skeletal muscle myosin; about 30% myosin-positive cells were observed after 14 days of treatment, compared to 2.3% in untreated cultures. The results showed that aphidicolin induces differentiation of human rhabdomyosarcoma cells and that multinucleated myotube-like elements may develop simply by cell fusion without cell division and DNA synthesis.  相似文献   

10.
Cell fusion, cell number, soluble cell protein and creatine kinase activity have been measured simultaneously in chick muscle cell cultures exposed to various calcium ion concentrations for various periods of time, by adding either extra calcium chloride or the calcium-chelating agent, EGTA. Up to 0.75 mM EGTA cell fusion is not inhibited, but the specific activity of creatine kinase is reduced by 20–50%. Between 0.75 and 1.7 mM EGTA, cell fusion is gradually abolished and the increase in cell number prevented, but enzyme specific activity actually increases again and returns to control values. Adding extra Ca2+ produces small increases in cell fusion and soluble cell protein, but much greater increases in creatine kinase activity. EGTA stimulates thymidine incorporation into DNA at low concentrations and then inhibits again as its concentration is increased further. These effects of EGTA on cell division may be related to its effects on creatine kinase. The implications of these results are discussed in terms of current ideas about the inter-relationships between cell fusion, cell division and the accumulation of muscle proteins during differentiation. In particular they show that cell fusion is not essential for the attainment of normal levels of creatine kinase.  相似文献   

11.
A plasmid containing the human preprourokinase gene cDNA under the control of the simian virus 40 early region promoter was introduced into CHO-K1 cells and recombinant cell lines secreting a relatively high level of urokinase were obtained. In the course of studying the effects of various agents on the recombinant cell lines, we found that exposure of recombinant cells to 5 mM butyrate for 24 hours resulted in a 2-3 fold increase in urokinase production. The induction by butyrate was dose-dependent. The half maximal dose was approximately 2 mM; maximal stimulation occurred at 5-10 mM. Cell growth, on the other hand, was inhibited by butyrate concentrations greater than 2.5 mM. The response of cells to butyrate was rapid: a significant increase in urokinase production was observed 6 hours after exposure to 5 mM butyrate. Butyrate treatment increased not only the extracellular level but also the intracellular level of urokinase.  相似文献   

12.
Male Wistar rats were exposed to 575 (100 ppm), 2875 (500 ppm) or 5750 mg/m3 (1000 ppm) white spirit vapour for 4–17 weeks 5 days a week, 6 h daily. Perirenal fat solvent concentration corresponded in composition and concentration to those of the vapour at all times. The neurochemical effects included a dose-dependent decrease in the cerebellar succinate dehydrogenase activity for 8 weeks while creatine kinase activity increased after 12 weeks. The specific creatine kinase activity in the glial cell fraction, a marker for astroglia, did not increase suggesting proliferation of astroglial cells in the homogenate. The serum creatine kinase activity originating mainly from striated muscle was below the control range at the two higher concentrations after 12 weeks. Simultaneous analyses for isolated muscle membrane sialic acid and uronic acid residues showed decreased concentrations in proportion to lipid phosphorus or total membrane protein. Thus, the white spirit mixture has neurochemical effects possibly caused by paraffins and the same components may have caused the muscle cell membrane effects. The lowest exposure concentration represents a virtual ‘no effect’ level for rats in the 17-week exposure.  相似文献   

13.
Incubation of HeLa cells in the presence of millimolar concentrations of propionate, butyrate, or pentanoate increases the specific activity of CMP-sialic acid:lactosylceramide sialyltransferase 7-20-fold within 24 h. Longer-chain saturated fatty acids or acetate are much less effective, decanoate showing no induction. Unsaturated fatty acid analogs of butyrate and other compounds are ineffective. Only the three most effective compounds also produce characteristic smooth extended cell processes in HeLa cells. Butyrate (5 mM) induces the sialyltransferase after a 4-h lag, producing maximum specific activity by 24 h. The amount of sialyl-lactosylceramide, the glycolipid product of the enzyme, increases during that time 3.5 times more than in control cultures. No other glycosphingolipid enzyme is significantly altered by butyrate exposure. The cellular shape changes occur 2-3 h later than the increase of sialyltransferase activity, and both processes require the continuous presence of inducer and the synthesis of RNA and protein but not the synthesis of DNA or the presence of serum.  相似文献   

14.
Proliferation of muscle satellite cells on intact myofibers in culture   总被引:18,自引:0,他引:18  
Muscle satellite cells are quiescent myogenic stem cells situated between the basal lamina and plasmalemma of mature skeletal muscle fibers. Injury to the fiber triggers the activation and proliferation of satellite cells whose progeny subsequently fuse to form new myotubes during regeneration. In this paper we report the proliferation of satellite cells on single muscle fibers isolated from adult rats and placed in culture. Viable fibers were liberated from muscle with collagenase and purified from non-muscle cells. The fibers were covered with a basal lamina and retained normal morphological characteristics. Each fiber contained two to three satellite cells per 100 myonuclei. Satellite cells showed little proliferative activity in medium with 10% serum but could be induced to enter the cell cycle by chick embryo extract or fibroblast growth factor. Other polypeptide mitogens such as epidermal growth factor, multiplication stimulating activity, and platelet-derived growth factor were ineffective. Mitogen-stimulated satellite cells fused to form new myotubes after 4-5 days in culture. These results imply that satellite cells are under positive growth control since they proliferate in contact with viable mature fibers when stimulated with mitogen. The mature fibers remained viable in culture but did not give rise to mononucleated cells. After several days, however, the fibers began to extend sarcoplasmic sprouts and underwent dedifferentiative changes that led to the formation of multinucleated cells resembling myotubes. These cells reexpressed embryonic isozymes of creatine kinase not made by the mature fibers.  相似文献   

15.
The cell line 4IC6, adapted for growth in 6 mM sodium butyrate from Hepatoma Tissue Culture cells [R. Chalkley, and A. Shires (1985) J. Biol. Chem. 260, 7698-7704], exhibits a fourfold increase in histone acetate turnover. The 4IC6 cells were about 25 times more resistant to butyrate relative to the parental cell line as measured by cloning efficiency. This line also maintains a flatter and more extended morphology when growing in the presence of 6 mM sodium butyrate relative to the parental line. Both cell lines maintain similar intracellular butyrate levels and incorporate [1-14C]butyrate into lipids to similar extents when incubated in medium containing high levels of the fatty acid. These results show that 4IC6 cells have not attained butyrate resistance through acquiring the ability to metabolize butyrate more efficiently or in a significantly different manner when compared with the parental cell line. The membrane lipid composition was nearly identical between the two cell types. Thus the different morphologies exhibited by each cell line were not a consequence of altered membrane lipid composition. The resistant line, 4IC6, maintains about 10-fold higher cholesterol ester levels and half the level of triglycerides found in the parental line. The butyrate-resistant cells also synthesize cholesterol at about a 1.8-fold higher rate than do the parental cells. This difference in de novo synthesis is reflected by a difference of a similar factor in the amount of radioactive cholesterol the two cell lines accumulate over 12 generations. These results are discussed with respect to models for equilibration of serum lipoprotein-derived and newly synthesized cholesterol.  相似文献   

16.
Chicken muscle cell cultures were incubated at 41 degrees C, the physiological chicken body temperature, and compared with cultures incubated at 37 degrees C, the typical cell culture incubation temperature. The cultures incubated at 41 degrees C show not only an increase in creatine kinase (CK)-specific activity but also a marked increase in the percentage of adult muscle CK isozyme (MM-CK) in 7-day muscle cultures. Muscle cell cultures incubated in the presence of cytosine arabinoside (ara-C), a cell proliferation inhibitor, do not have the mononucleated cell overgrowth seen at 41 degrees C and thus exhibit a further increase in creatine kinase-specific activity compared with cultures incubated at 41 degrees C in the absence of ara-C. These results suggest that muscle cell cultures incubated at 41 degrees C are more highly differentiated than those incubated at 37 degrees C.  相似文献   

17.
A protective effect of butyrate against hyperoxia was found with adult rat pulmonary artery smooth muscle cells. Butyrate (5mM) when added just prior to the hyperoxic exposure (95%) markedly decreased lactate dehydrogenase release from cells during 68 hours of exposure (22% release with butyrate versus 98% without). The uptake and reduction of a tetrazolium compound as another index of cell viability also showed similar improvement with butyrate. Butyrate was associated with a striking increase of catalase to three times the control in the air exposed group while GSH content and the activities of superoxide dismutase and glutathione peroxidase were not significantly changed. In the groups exposed to hyperoxia alone, both enzyme activities were decreased compared to the air exposed controls. When butyrate was present with hyperoxia, the superoxide dismutase was maintained closer to the air exposed control values and the catalase activity remained nearly twice as high as the air exposed control cells. These results suggest that butyrate protects rat pulmonary artery smooth muscle cells from hyperoxia by increasing catalase activity which may help to preserve superoxide dismutase activity. This may be a good model to determine the biological significance of catalase and its interrelationships with other antioxidant systems within the cell.  相似文献   

18.
19.
The role of the creatine phosphate shuttle in the energetics of muscle protein synthesis in isolated polysomes, from rat hindlimb muscle, was studied. Triton X-100-treated polysomes, following their centrifugation through a 1 M sucrose gradient, contained 38 mU/mg RNA of bound creatine kinase. In the presence of pH 5 enzyme (obtained from rat liver), 0.5 mM ATP, and 1 microM GTP, amino acid (leucine) incorporation by polysomes in the presence of 8 mM creatine phosphate was twice that in the presence of an exogenous ATP regenerating system of 10 mM phospho(enol)pyruvate and 10 U/ml pyruvate kinase. Since added creatine kinase had no effect on incorporation supported by creatine phosphate it is clear that endogenous creatine kinase allows sufficient regeneration of ATP. These data also suggest that nucleoside diphosphokinase must have been associated with the polysome for phosphate was transferred to GTP from [33P]creatine phosphate, and the specific activities of ATP and GTP increased at equal rates, reaching the specific activity of creatine phosphate at 8 min. We conclude that skeletal muscle polysomes have bound creatine kinase activity and they act as terminals for the creatine phosphate energy shuttle. Creatine phosphate regenerates GTP, probably through an intermediate reaction catalyzed by nucleoside diphosphokinase. This provided an added support for the hypothesis of compartmentation of enzymes and substrates and that the transport form of energy between the mitochondria and energy utilizing sites in muscle is creatine phosphate rather than ATP, which extends the general role of the creatine phosphate energy shuttle.  相似文献   

20.
It was found that in the octameric form of mitochondrial creatine kinase (Mr = 340 kD), only 52% of active centers bind Mg-ADP into a E-Mg-ADP-creatine complex with the dissociation constant, K(Cr)ADP, of 0.105 mM, which is close to the Km value for the enzyme (0.072 mM). In the dimeric form of cytoplasmic creatine kinase (Mr = 82 kD), 100% of active centers bind Mg--ADP; the K(Cr)ADP value (0.11 mM) is close to the Km value for the given enzyme preparation (0.083 mM). All active centers of rabbit muscle cytoplasmic creatine kinase were shown to form an analog of the transition state complex (ATSC) - E-Mg-ADP-NO3- -creatine. The constant for Mg-ADP dissociation from ATSC is identical for all centers of cytoplasmic creatine kinase and equals to 6.0 microM. The curves for ATSC saturation with Mg-ADP in the presence of iodacetamide for mitochondrial creatine kinase were constructed and computer analyzed. It was shown that in the octameric form of the enzyme only 54 +/- 13% of subunits can form ATSC. The constant for Mg-ADP dissociation from ATSC, KATSCADP is equal to 1.9 +/- 0.8 microM. It was concluded that 50% of subunits of the octameric form of mitochondrial creatine kinase are not involved in the catalytic act due to masking of their active centres and their inability to form transition state complexes. A model of regulation of cell supply with high energy compounds, e.g., ATP, creatine phosphate, via association-dissociation of mitochondrial creatine kinase oligomers is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号