首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations designed by analysis of the Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV)-1 protease (PR) crystal structures were introduced into 1) the substrate binding pocket, 2) the substrate enclosing "flaps," and 3) surface loops of RSV PR. Each mutant PR was expressed in Escherichia coli. Changes in activity were detected by following cleavage of a truncated (NC-PR) precursor polypeptide in E. coli and cleavage of synthetic peptide substrates representing RSV and HIV-1 PR cleavage sites in vitro. Mutations in the substrate binding pocket exchanged amino acid residues located close to the substrate in the HIV-1 PR for structurally equivalent residues in the RSV PR. Changing histidine 65 to glycine (H65G) gave an inactive enzyme, while a double mutant R105P,G106V, as well as the triple mutant, H65G,R105P,G106V, produced enzymes which showed significant activity toward a substrate that represented a HIV-1 cleavage site. Mutating the catalytic aspartate (D37S) or an adjacent conserved alanine to threonine (A40T), produced inactive enzymes. In contrast, the substitution A40S was active, but showed a reduced rate of catalysis. Mutations in the flaps of conserved glycines (G69L, G70L) produced inactive PRs. Two extended RSV PR surface loops were shortened to the size found in HIV-1 PR and resulted in drastically reduced activity. These results have confirmed some of the basic predictions made from structural models but have also revealed unexpected roles and interactions in the protein.  相似文献   

2.
A Gustchina  I T Weber 《Proteins》1991,10(4):325-339
The different isolates available for HIV-1 and HIV-2 were compared for the region of the protease (PR) sequence, and the variations in amino acids were analyzed with respect to the crystal structure of HIV-1 PR with inhibitor. Based on the extensive homology (39 identical out of 99 residues), models were built of the HIV-2 PR complexed with two different aspartic protease inhibitors, acetylpepstatin and a renin inhibitor, H-261. Comparison of the HIV-1 PR crystal structure and the HIV-2 PR model structure and the analysis of the changes found in different isolates showed that correlated substitutions occur in the hydrophobic interior of the molecule and at surface residues involved in ionic or hydrogen bond interactions. The substrate binding residues of HIV-1 and HIV-2 PRs show conservative substitutions of four residues. The difference in affinity of HIV-1 and HIV-2 PRs for the two inhibitors appears to be due in part to the change of Val 32 in HIV-1 PR to Ile in HIV-2 PR.  相似文献   

3.
The activity of the avian myeloblastosis virus (AMV) or the human immunodeficiency virus type 1 (HIV-1) protease on peptide substrates which represent cleavage sites found in the gag and gag-pol polyproteins of Rous sarcoma virus (RSV) and HIV-1 has been analyzed. Each protease efficiently processed cleavage site substrates found in their cognate polyprotein precursors. Additionally, in some instances heterologous activity was detected. The catalytic efficiency of the RSV protease on cognate substrates varied by as much as 30-fold. The least efficiently processed substrate, p2-p10, represents the cleavage site between the RSV p2 and p10 proteins. This peptide was inhibitory to the AMV as well as the HIV-1 and HIV-2 protease cleavage of other substrate peptides with Ki values in the 5-20 microM range. Molecular modeling of the RSV protease with the p2-p10 peptide docked in the substrate binding pocket and analysis of a series of single-amino acid-substituted p2-p10 peptide analogues suggested that this peptide is inhibitory because of the potential of a serine residue in the P1' position to interact with one of the catalytic aspartic acid residues. To open the binding pocket and allow rotational freedom for the serine in P1', there is a further requirement for either a glycine or a polar residue in P2' and/or a large amino acid residue in P3'. The amino acid residues in P1-P4 provide interactions for tight binding of the peptide in the substrate binding pocket.  相似文献   

4.
Molecular modeling based on the crystal structure of the Rous sarcoma virus (RSV) protease dimer has been used to link the two identical subunits of this enzyme into a functional, single polypeptide chain resembling the nonviral aspartic proteases. Six different linkages were selected to test the importance of different interactions between the amino acids at the amino and carboxyl termini of the two subunits. These linkages were introduced into molecular clones of fused protease genes and the linked protease dimers were expressed in Escherichia coli and purified. Catalytically active proteins were obtained from the inclusion body fraction after renaturation. The linked protease dimers exhibited a 10-20-fold range in catalytic efficiencies (Vmax/Km) on peptide substrates. Both flexibility and ionic interactions in the linkage region affect catalytic efficiency. Some of the linked protease dimers were 2-3-fold more active than the nonlinked enzyme purified from bacteria, although substrate specificities were unchanged. Similar relative efficiencies were observed using a polyprotein precursor as substrate. Mutation of one catalytic Asp in the most active linked protease dimer inactivated the enzyme, demonstrating that these proteins function as single polypeptide chains rather than as multimers.  相似文献   

5.
The specificities of the proteases of 11 retroviruses representing each of the seven genera of the family Retroviridae were studied using a series of oligopeptides with amino acid substitutions in the P2 position of a naturally occurring type 1 cleavage site (Val-Ser-Gln-Asn-Tyr Pro-Ile-Val-Gln; the arrow indicates the site of cleavage) in human immunodeficiency virus type 1 (HIV-1). This position was previously found to be one of the most critical in determining the substrate specificity differences of retroviral proteases. Specificities at this position were compared for HIV-1, HIV-2, equine infectious anemia virus, avian myeloblastosis virus, Mason-Pfizer monkey virus, mouse mammary tumor virus, Moloney murine leukemia virus, human T-cell leukemia virus type 1, bovine leukemia virus, human foamy virus, and walleye dermal sarcoma virus proteases. Three types of P2 preferences were observed: a subgroup of proteases preferred small hydrophobic side chains (Ala and Cys), and another subgroup preferred large hydrophobic residues (Ile and Leu), while the protease of HIV-1 preferred an Asn residue. The specificity distinctions among the proteases correlated well with the phylogenetic tree of retroviruses prepared solely based on the protease sequences. Molecular models for all of the proteases studied were built, and they were used to interpret the results. While size complementarities appear to be the main specificity-determining features of the S2 subsite of retroviral proteases, electrostatic contributions may play a role only in the case of HIV proteases. In most cases the P2 residues of naturally occurring type 1 cleavage site sequences of the studied proteases agreed well with the observed P2 preferences.  相似文献   

6.
Highly purified, recombinant preparations of the virally encoded proteases from human immunodeficiency viruses (HIV) 1 and 2 have been compared relative to 1) their specificities toward non-viral protein and synthetic peptide substrates, and 2) their inhibition by several P1-P1' pseudodipeptidyl-modified substrate analogs. Hydrolysis of the Leu-Leu and Leu-Ala bonds in the Pseudomonas exotoxin derivative, Lys-PE40, is qualitatively the same for HIV-2 protease as published earlier for the HIV-1 enzyme (Tomasselli, A. G., Hui, J. O., Sawyer, T. K., Staples, D. J., FitzGerald, D. J., Chaudhary, V. K., Pastan, I., and Heinrikson, R. L. (1990) J. Biol. Chem. 265, 408-413). However, the rates of cleavage at these two sites are reversed for the HIV-2 protease which prefers the Leu-Ala bond. The kinetics of hydrolysis of this protein substrate by both enzymes are mirrored by those obtained from cleavage of model peptides. Hydrolysis by the two proteases of other synthetic peptides modeled after processing sites in HIV-1 and HIV-2 gag polyproteins and selected analogs thereof demonstrated differences, as well as similarities, in selectivity. For example, while the two proteases were nearly identical in their rates of cleavage of the Tyr-Pro bond in the HIV-1 gag fragment, Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val, the HIV-1 protease showed a 64-fold enhancement over the HIV-2 enzyme in hydrolysis of a Tyr-Val bond in the same template. Accordingly, the HIV-2 protease appears to have a different specificity than the HIV-1 enzyme; it is better able to hydrolyze substrates with small amino acids in P1 and P1', but is variable in its rate of hydrolysis of peptides with bulky substituents in these positions. In addition to these comparisons of the two proteases with respect to substrate specificity, we present inhibitor structure-activity data for the HIV-2 protease. Relative to P1-P1' statine or Phe psi [CH2N]Pro-modified pseudopeptidyl inhibitors, compounds having Xaa psi[CH(OH)CH2]Yaa inserts were found to show significantly higher affinities to both enzymes, generally binding from 10 to 100 times stronger to HIV-1 protease than to the HIV-2 enzyme. Molecular modeling comparisons based upon the sequence homology of the two enzymes and x-ray crystal structures of HIV-1 protease suggest that most of the nonconservative amino acid replacements occur in regions well outside the catalytic cleft, while only subtle structural differences exist within the active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In the preceding study, mutant Rous sarcoma virus (RSV) proteases are described in which three amino acids found in the human immunodeficiency virus-1 (HIV-1) protease (PR) were substituted into structurally comparable positions (Grinde, B., Cameron, C.E., Leis, J., Weber, I., Wlodawer, A., Burstein, H., Bizub, D., and Skalka, A. M. (1992) J. Biol. Chem. 267, 9481-9490). In this report, the activity of the wild type and these mutant PRs are compared using a set of RSV NC-PR peptide substrates with single amino acid substitutions in each of the P4 to P3' positions. With most substrates, the relative activities of the two active mutants followed that of the RSV PR. Substitutions in the P1 and P1' positions were an exception; in this case, the mutants behaved more like the HIV-1 PR. These results confirm predictions from structural analyses which indicate that residues 105 and 106 of the RSV PR are important in forming the S1 and S1' binding subsites. These results, further analyzed with the aid of computer modeling of the RSV PR with different substrates, provide an explanation for why only partial HIV-1 PR-like behavior was introduced into the above RSV PR mutants.  相似文献   

8.
We show here for the first time that actin, troponin C, Alzheimer amyloid precursor protein (AAP), and pro-interleukin 1 beta (pro-IL-1 beta), are substrates of the protease encoded by the human immunodeficiency virus (HIV) type-1. As has been seen in other non-viral protein substrates of the HIV protease, the presence of Glu residues in the P2' position appears to play an important role in substrate recognition. Three of the four bonds cleaved in actin, two of the three in troponin C, and all of the bonds hydrolyzed in AAP and pro-IL-1 beta have a P2' Glu residue. In fact, Glu residues are accommodated in all positions from P4 to P4' surrounding the scissile bond in substrates of the HIV proteases, and as many as 4 adjacent Glu residues were seen in one of the bonds cleaved in AAP. This study of non-viral protein substrates has also revealed unexpected amino acids such as Gly, Arg, and Glu in the scissile bond itself rather than the more conventional hydrophobic amino acids. The HIV-2 protease hydrolyzed actin in a manner similar to that of the HIV-1 enzyme, but its cleavage of troponin C was distinct in that it split a bond adjacent to a triplet of Glu residues in P2, P3, and P4 that was refractory to the HIV-1 enzyme. Documentation of cleavage sites in the several important cellular proteins noted above has extended our understanding of the features in a substrate that are recognized by these multi sub-site proteases of retroviral maturation. Moreover, the present work adds to an accumulating body of evidence which demonstrates that these enzymes can damage crucial structural and regulatory cellular proteins if ever their activity is expressed outside the viral particle itself.  相似文献   

9.
The effect of amino acid variability between human immunodeficiency virus type 1 (HIV-1) clades on structure and the emergence of resistance mutations in HIV-1 protease has become an area of significant interest in recent years. We determined the first crystal structure of the HIV-1 CRF01_AE protease in complex with the p1-p6 substrate to a resolution of 2.8 A. Hydrogen bonding between the flap hinge and the protease core regions shows significant structural rearrangements in CRF01_AE protease compared to the clade B protease structure.  相似文献   

10.
The crystal structure of the aspartyl protease encoded by the gene pol of the human immunodeficiency virus (HIV-1, isolate BRU) has been determined to 2.7 A resolution. The enzyme, expressed as an insoluble denatured polypeptide in inclusion bodies of Escherichia coli has been renatured and crystallized. It differs by several amino acid replacements from the homologous enzymes of other HIV-1 isolates. A superposition of the C alpha-backbone of the BRU protease with that of the SF2 protease gives a roots mean square positional difference of 0.45 A. Thus, neither the denaturation/renaturation process nor the amino acid replacements have a noticeable effect on the three-dimensional structure of the BRU protease or on the detailed conformation of the catalytic site, which is very similar to that of other aspartyl proteases.  相似文献   

11.
Statistical analysis of an expanded data base of regions in viral polyproteins and in non-viral proteins that are sensitive to hydrolysis by the protease from human immunodeficiency virus (HIV) type 1 has generated a model which characterizes the substrate specificity of this retroviral enzyme. The model leads to an algorithm for predicting protease-susceptible sites from primary structure. Amino acids in each of the sites from P4 to P4' are tabulated for 40 protein substrates, and the frequency of occurrence for each residue is compared to the natural abundance of that amino acid in a selected data set of globular proteins. The results suggest that the highest stringency for particular amino acid residues is at the P2, P1, and P2' positions of the substrate. The broad specificity of the HIV-1 protease appears to be a consequence of its being able to bind productively substrates in which interactions with only a few Pi or Pi' side-chains need be optimized. The analysis, extended to 22 protein segments cleaved by the HIV-2 protease, delineates marked differences in specificity from that of the HIV-1 enzyme.  相似文献   

12.
P Gros  A V Teplyakov  W G Hol 《Proteins》1992,12(1):63-74
Thermitase is a thermostable member of the subtilisin family of serine proteases. Four independently determined crystal structures of the enzyme are compared in this study: a high resolution native one and three medium resolution complexes of thermitase with eglin-c, grown from three different calcium concentrations. It appeared that the B-factors of the thermitase eglin complex obtained at 100 mM CaCl2 and elucidated at 2.0 A resolution are remarkably similar to those of the 1.4 A native structure: the main chain atoms have an rms difference of only 2.3 A2; for all atoms this difference is 4.6 A2. The rms positional differences between these two structures of thermitase are 0.31 A for the main chain atoms and 0.58 A for all atoms. There results show that not only atomic positions but also temperature factors can agree well in X-ray structures determined entirely independently by procedures which differ in virtually every possible technical aspect. A detailed comparison focussed on the effects of eglin binding on the structure of thermitase. Thermitase can be considered as consisting of (1) a central core of 94 residues, plus (2) four segments of 72 residues in total which shift as rigid bodies with respect to the core, plus (3) the remaining 113 residues which show small changes but, however, cannot be described as rigid bodies. The central cores of native thermitase and the 100 mM CaCl2 thermitase:eglin complex have an rms deviation of 0.13 A for 376 main chain atoms. One of the segments, formed by loops of the strong calcium binding site, shows differences up to 1.0 A in C alpha positions. These are probably due to crystal packing effects. The three other segments, comprising 51 residues, are affected conformational changes upon eglin binding so that the P1 to P3 binding pockets of thermitase broaden by 0.4 to 0.7 A. The residues involved in these changes correspond with residues which change position upon inhibitor binding in other subtilisins. This suggests that an induced fit mechanism is operational during substrate recognition by subtilisins.  相似文献   

13.
The structure of rat mast cell protease II at 1.9-A resolution   总被引:14,自引:0,他引:14  
The structure of rat mast cell protease II (RMCP II), a serine protease with chymotrypsin-like primary specificity, has been determined to a nominal resolution of 1.9 A by single isomorphous replacement, molecular replacement, and restrained crystallographic refinement to a final R-factor of 0.191. There are two independent molecules of RMCP II in the asymmetric unit of the crystal. The rms deviation from ideal bond lengths is 0.016 A and from ideal bond angles is 2.7 degrees. The overall structure of RMCP II is extremely similar to that of chymotrypsin, but the largest differences between the two structures are clustered around the active-site region in a manner which suggests that the unusual substrate specificity of RMCP II is due to these changes. Unlike chymotrypsin, RMCP II has a deep cleft around the active site. An insertion of three residues between residues 35 and 41 of chymotrypsin, combined with concerted changes in sequence and a deletion near residue 61, allows residues 35-41 of RMCP II to adopt a conformation not seen in any other serine protease. Additionally, the loss of the disulfide bridge between residues 191 and 220 of chymotrypsin leads to the formation of an additional substrate binding pocket that we propose to interact with the P3 side chain of bound substrate. RMCP II is a member of a homologous subclass of serine proteases that are expressed by mast cells, neutrophils, lymphocytes, and cytotoxic T-cells. Thus, the structure of RMCP II forms a basis for an explanation of the unusual properties of other members of this class.  相似文献   

14.
A computer model of a noncovalent complex of HIV-1 aspartyl protease with substrate-like inhibitor JG-365 was a priori constructed by using the approaches of theoretical conformational analysis and molecular mechanics. The root mean square deviation of the calculated conformation of the inhibitor from the X-ray diffraction analysis data was 0.87 A. These results enabled the a priori calculation of the structure of noncovalent complex of HIV-1 protease with a hexapeptide fragment of its native specific substrate Ser-Gln-Asn-Tyr-Pro-Ile-Val. The only possible orientation of the cleavable peptide bond in this and the nucleophilic water molecule relative to the catalytically active Asp residues of the enzyme (Asp25 and Asp125) was found that provides for the chemical transformation of the substrate to a tetrahedral intermediate. An action mechanism of enzymes of this class was proposed on the basis of the analysis of calculated distances. We showed that neither steric distortion of the cleavable bond nor the formation of unfavorable contacts in molecules of the enzymes and their substrates accompany the optimum orientation of substrate molecules at the active sites of HIV-1 aspartyl proteases and rhizopuspepsin.  相似文献   

15.
Human T-cell leukemia virus type 1 (HTLV-1) is associated with a number of human diseases; therefore, its protease is a potential target for chemotherapy. To compare the specificity of HTLV-1 protease with that of human immunodeficiency virus type 1 (HIV-1) protease, oligopeptides representing naturally occurring cleavage sites in various retroviruses were tested. The number of hydrolyzed peptides as well as the specificity constants suggested a substantially broader specificity of the HIV protease. Amino acid residues of HTLV-1 protease substrate-binding sites were replaced by equivalent ones of HIV-1 protease. Most of the single and multiple mutants had altered specificity and a dramatically reduced folding and catalytic capability, suggesting that mutations are not well tolerated in HTLV-1 protease. The catalytically most efficient mutant was that with the flap residues of HIV-1 protease. The inhibition profile of the mutants was also determined for five inhibitors used in clinical practice and inhibitor analogs of HTLV-1 cleavage sites. Except for indinavir, the HIV-1 protease inhibitors did not inhibit wild type and most of the mutant HTLV-1 proteases. The wild type HTLV-1 protease was inhibited by the reduced peptide bond-containing substrate analogs, whereas the mutants showed various degrees of weakened binding capability. Most interesting, the enzyme with HIV-1-like residues in the flap region was the most sensitive to the HIV-1 protease inhibitors and least sensitive to the HTLV-1 protease inhibitors, indicating that the flap plays an important role in defining the specificity differences of retroviral proteases.  相似文献   

16.
M D Paulsen  R L Ornstein 《Proteins》1991,11(3):184-204
The structure and internal motions of cytochrome P-450cam, a monooxygenase heme enzyme with 414 amino acid residues, with camphor bound at the active site have been evaluated on the basis of a 175-psec molecular dynamics simulation carried out at 300 K. All hydrogen atoms were explicitly modeled, and 204 crystallographic waters were included in the simulation. Based on an analysis of the time course of the trajectory versus potential energy, root mean square deviation, radius of gyration, and hydrogen bonding, the simulation was judged to be stable and representative of the average experimental structure. The averaged structural properties of the enzyme were evaluated from the final 135 psec of the simulation. The average atomic displacement from the X-ray structure was 1.39 A for all heavy atoms and 1.17 A for just C-alpha atoms. The average root-mean-square (rms) fluctuations of all heavy atoms and backbone atoms were 0.42 and 0.37 A, respectively. The computed rms fluctuations were in reasonable agreement with the experimentally determined temperature factors. All 13 segments of alpha-helix and 5 segments of beta-sheet were well preserved with the exception of the N-terminal half of helix F which alternated between an alpha-helix and a 310-helix. In addition there were in general only small variations in the relative orientation of adjacent alpha-helices. The rms fluctuations of the backbone dihedral angles in the secondary structure elements were almost uniformly smaller, with the fluctuation in alpha-helices and beta-sheets, 31 and 10% less, respectively, than those in nonsecondary structure regions. The reported crystal structure contains kinks in both helices C and I. In the simulation, both of these regions showed high mobility and large deviations from their starting positions. Since the kink in the I helix is at the oxygen binding site, these motions may have mechanistic implications.  相似文献   

17.
The prime side specificity of dengue protease substrates was investigated by use of proteochemometrics, a technology for drug target interaction analysis. A set of 48 internally quenched peptides were designed using statistical molecular design (SMD) and assayed with proteases of four subtypes of dengue virus (DEN-1-4) for Michaelis (K(m)) and cleavage rate constants (k(cat)). The data were subjected to proteochemometrics modeling, concomitantly modeling all peptides on all the four dengue proteases, which yielded highly predictive models for both activities. Detailed analysis of the models then showed that considerably differing physico-chemical properties of amino acids contribute independently to the K(m) and k(cat) activities. For k(cat), only P1' and P2' prime side residues were important, while for K(m) all four prime side residues, P1'-P4', were important. The models could be used to identify amino acids for each P' substrate position that are favorable for, respectively, high substrate affinity and cleavage rate.  相似文献   

18.
Rapidly developing viral resistance to licensed human immunodeficiency virus type 1 (HIV-1) protease inhibitors is an increasing problem in the treatment of HIV-infected individuals and AIDS patients. A rational design of more effective protease inhibitors and discovery of potential biological substrates for the HIV-1 protease require accurate models for protease cleavage specificity. In this study, several popular bioinformatic machine learning methods, including support vector machines and artificial neural networks, were used to analyze the specificity of the HIV-1 protease. A new, extensive data set (746 peptides that have been experimentally tested for cleavage by the HIV-1 protease) was compiled, and the data were used to construct different classifiers that predicted whether the protease would cleave a given peptide substrate or not. The best predictor was a nonlinear predictor using two physicochemical parameters (hydrophobicity, or alternatively polarity, and size) for the amino acids, indicating that these properties are the key features recognized by the HIV-1 protease. The present in silico study provides new and important insights into the workings of the HIV-1 protease at the molecular level, supporting the recent hypothesis that the protease primarily recognizes a conformation rather than a specific amino acid sequence. Furthermore, we demonstrate that the presence of 1 to 2 lysine residues near the cleavage site of octameric peptide substrates seems to prevent cleavage efficiently, suggesting that this positively charged amino acid plays an important role in hindering the activity of the HIV-1 protease.  相似文献   

19.
Meprins are complex and highly glycosylated multi-domain enzymes that require post-translational modifications to reach full activity. Meprins are metalloproteases of the astacin family characterized by a conserved zinc-binding motif (HExxHxxGFxHExxRxDR). Human meprin-α and -β protease subunits are 55% identical at the amino acid level, however the substrate and peptide bond specificities vary markedly. Current work focuses on the critical amino acid residues in the non-primed subsites of human meprins-α and -β involved in inhibitor/ligand binding. To compare the molecular events underlying ligand affinity, homology modeling of the protease domain of humep-α and -β based on the astacin crystal structure followed by energy minimization and molecular dynamics simulation of fully solvated proteases with inhibitor Pro-Leu-Gly-hydroxamate in S subsites were performed. The solvent accessible surface area curve shows a decrease in solvent accessibility values at specific residues upon inhibitor binding. The potential energy, total energy, H-bond interactions, root mean square deviation and root mean square fluctuation plot reflect the subtle differences in the S subsite of the enzymes which interact with different residues at P site of the inhibitor.  相似文献   

20.
The mutation Ala28 to serine in human immunodeficiency virus, type 1, (HIV-1) protease introduces putative hydrogen bonds to each active-site carboxyl group. These hydrogen bonds are ubiquitous in pepsin-like eukaryotic aspartic proteases. In order to understand the significance of this difference between HIV-1 protease and homologous, eukaryotic aspartic proteases, we solved the three-dimensional structure of A28S mutant HIV-1 protease in complex with a peptidic inhibitor U-89360E. The structure has been determined to 2.0 A resolution with an R factor of 0.194. Comparison of the mutant enzyme structure with that of the wild-type HIV-1 protease bound to the same inhibitor (Hong L, Treharne A, Hartsuck JA, Foundling S, Tang J, 1996, Biochemistry 35:10627-10633) revealed double occupancy for the Ser28 hydroxyl group, which forms a hydrogen bond either to one of the oxygen atoms of the active-site carboxyl or to the carbonyl oxygen of Asp30. We also observed marked changes in orientation of the Asp25 catalytic carboxyl groups, presumably caused by the new hydrogen bonds. These observations suggest that catalytic aspartyl groups of HIV-1 protease have significant conformational flexibility unseen in eukaryotic aspartic proteases. This difference may provide an explanation for some unique catalytic properties of HIV-1 protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号