首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionic-liquid buffer having phosphate anion was synthesized for the development of buffered enzymatic ionic liquid systems. Both the conformation and transesterification activity of Candida antarctica lipase B (CALB) dissolved in the hydroxyl-functionalized ionic liquids were buffer dependent. Intrinsic fluorescence studies indicated that the CALB possessed a more compact conformation in the medium consisted of ionic liquid buffer having phosphate anion and hydroxyl-functionalized ionic liquids like 1-(1-hydroxyethyl)-3-methyl-imidazolium tetrafluoroborate and 1-(1-hydroxyethyl)-3-methyl-imidazolium nitrate. High activity and outstanding stability could be obtained with the CALB enzyme in the buffered ionic liquids for the transesterification.  相似文献   

2.
The transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol catalyzed by alpha-chymotrypsin was examined in the ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF(6)]), and in combination with supercritical carbon dioxide (SC-CO(2)). The activity of alpha-chymotrypsin was studied to determine whether trends in solvent polarity, water activity, and enzyme support properties, observed with this enzyme in conventional organic solvents, hold for the novel environment provided by ionic liquids. alpha-Chymotrypsin freeze-dried with K(2)HPO(4), KCl, or poly(ethylene glycol) demonstrated no activity in [bmim][PF(6)] or [omim][PF(6)] at very low water concentrations, but moderate transesterification rates were observed with the ionic liquids containing 0.25% water (v/v) and higher. However, the physical complexation of the enzyme with poly(ethylene glycol) or KCl did not substantially stimulate activity in the ionic liquids, unlike that observed in hexane or isooctane. Activities were considerably higher in [omim][PF(6)] than [bmim][PF(6)]. Added water was not necessary for enzyme activity when ionic liquids were combined with SC-CO(2). These results indicate that [bmim][PF(6)] and [omim][PF(6)] provide a relatively polar environment, which can be modified with nonpolar SC-CO(2) to optimize enzyme activity.  相似文献   

3.
Enzyme catalysis in ionic liquids   总被引:15,自引:0,他引:15  
Ionic liquids offer new possibilities for the application of solvent engineering to biocatalytic reactions. Although in many cases ionic liquids have simply been used to replace organic solvents, they have often led to improved process performance. Unlike conventional organic solvents, ionic liquids possess no vapor pressure, are able to dissolve many compounds, and can be used to form two-phase systems with many solvents. To date, reactions involving lipases have benefited most from the use of ionic liquids, but the use of ionic liquids with other enzymes and in whole-cell processes has also been described. In some cases, remarkable results with respect to yield, (enantio)selectivity or enzyme stability were observed.  相似文献   

4.
The stereospecific reduction of 6-Br-β-tetralone to its corresponding alcohol (S)-6-Br-β-tetralol was carried out by the yeast Trichosporon capitatum MY1890 and by the bacterium Rhodococcus erythropolis MA7213, using a range of ionic liquids chosen for the diversity of their composition. The decrease in cell viability of both types of cell upon exposure to ionic liquids was found to be between that determined for cells residing purely in fermentation media, and cells residing in a two-phase mixture of media and organic solvent (toluene). For T. capitatum MY1890 bioconversions, the water miscible hydrophilic ionic liquid [Emim][TOS] gave a reaction profile comparable to that observed in the previously studied water-ethanol (10% v/v) system, in terms of overall rate of reaction (0.2 g (prod) L-1 h-1) and conversion (100%). Of the hydrophobic ionic liquids evaluated, [Oc3MeN][BTA] gave the best conversion of 60%, but at a much reduced rate, suggesting solute mass transfer from the ionic liquid phase was rate limiting. For bioconversions carried out with R. erythropolis MA7213 employing 20% v/v [Emim][TOS] as a co-solvent, the conversion yield doubled, and a four-fold increase in initial rate was found compared to the standard ethanol co-solvent. This was attributed to improved cell viability and reduced aggregation of the R. erythropolis MA7213 compared to T. capitatum MY1890. Overall, this study demonstrates the feasibility of using ionic liquids for whole cell biocatalysis, however, no obvious link is apparent between the physico-chemical properties of ionic liquids, their influence on cell viability, and their efficacy as media for bioconversions.  相似文献   

5.
Ionic liquids have shown their potential as a solvent media for many enzymatic reactions as well as protein preservation, because of their unusual characteristics. It is also observed that change in cation or anion alters the physiochemical properties of the ionic liquids, which in turn influence the enzymatic reactions by altering the structure, activity, enatioselectivity, and stability of the enzymes. Thus, it is utmost need of the researchers to have full understanding of these influences created by ionic liquids before choosing or developing an ionic liquid to serve as solvent media for enzymatic reaction or protein preservation. So, in the present review, we try to shed light on effects of ionic liquids chemistry on structure, stability, and activity of enzymes, which will be helpful for the researchers in various biocatalytic applications.  相似文献   

6.
It is known that subtilisin shows poor transesterification activity in ionic liquids (ILs). The present work, taking subtilisin as the system, explores approaches for biocatalyst preparations, which are capable of yielding higher/adequate transesterification activity in these solvents. Of all the approaches tried, enzyme precipitated and rinsed with n-propanol (EPRP) gave the best results (about 10,000 times increase in initial rates in 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]) over what is obtained with pH tuned lyophilized powders). In case of water soluble ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), pH tuned lyophilized subtilisin did not show any transesterification activity. EPRP, however, gave an initial rate (for transesterification) of 2.78 mmol mg(-1) h(-1).  相似文献   

7.
几种离子液体的微波法合成及其对脂肪酶催化效果的影响   总被引:1,自引:0,他引:1  
采用微波法合成9种目标离子液体,对中间体[Bmim]Br的合成条件及其离子液体对全细胞催化剂催化效果的影响进行考察.直接将产脂肪酶真菌粗状假丝酵母(Candida valida) T2细胞固定在聚氨酯颗粒中,制备固定化细胞催化剂,将其应用于合成离子液体介质中催化甲醇与大豆油酯交换反应制备生物柴油.结果表明:微波功率200 W下间隙照射100 s,中间体[Bmim]Br的收率达95.16%,有效地提高了离子液合成产率;在[Bmim]PF6离子液中固定化细胞酶催化转酯化反应30 h,大豆油的转化率达42%,反应效果较其他8种合成离子液体好;固定化细胞颗粒和[Bmim]PF6重复使用4次,其油脂转化率和酶活保持率分别达到29%和69%,表现出较好的催化反应稳定性.  相似文献   

8.
Penicillin acylase catalysis in the presence of ionic liquids   总被引:2,自引:0,他引:2  
Several ionic liquids were used as reaction media for penicillin G acylase catalysis. In all the assayed ionic liquids, [bmim]PF6 proved good media for PGA-catalyzed hydrolysis. A novel [bmim]PF6/water two-phase system is provided for 6-aminopenicillanic acid (APA) production, which will be more benefical than aquous batch systems used widely in industrial production of APA.  相似文献   

9.
Enzyme catalysis with minimal ionic liquid quantities improves reaction rates, stereoselectivity and enables solvent-free processing. In particular the widely used lipases combine well with many ionic liquids. Demonstrated applications are racemate separation, esterification and glycerolysis. Minimal solvent processing is also an alternative to sluggish solvent-free catalysis. The method allows simplified down-stream processing, as only traces of ionic liquids have to be removed.  相似文献   

10.
Salt hydrate pairs were used to control water activity in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. It was shown that salt hydrate pairs behave essentially the same in ionic liquids as they do in organic solvents as long as they do not dissolve. Initial rate-water activity profiles were prepared for the immobilized Candida antarctica lipase catalyzed synthesis of 2-ethylhexyl methacrylate. The ability to use salt hydrate pairs for the control of water activity in ionic liquids should allow for improved comparison of enzyme activity and specificity in ionic liquids and conventional solvents.  相似文献   

11.
In this paper, an integrated process involving the mixed ionic liquids/water two-phase system (MILWS) is proposed to improve the efficiency for enzymatic hydrolysis of penicillin G. First, hydrophilic [C4mim]BF4 (1-butyl-3-methylimidazolium tetrafluoraborate) and NaH2PO4 salt form an ionic liquids aqueous two-phase system (ILATPS), which could extract penicillin from its fermentation broth efficiently. Second, a hydrophobic [C4mim]PF6 (1-butyl-3-methylimidazolium hexafluoraphosphate) is introduced into the ionic liquids-rich phase of ILATPS containing penicillin and converses it into MILWS. Penicillin is hydrolyzed by penicillin acylase in the water phase of MILWS at pH 5. The byproduct phenylacetic acid (PAA) is partitioned into the ionic liquids mixture phase, while the intended product 6-aminopenicillanic acid (6-APA) is precipitated at this pH. In comparison with a similar butyl acetate/water system (BAWS) at pH 4, MILWS exhibits two advantages. (1) The selectivity between PAA and penicillin is greatly optimized at pH 5 by varying the mole ratio of [C4mim]PF6/[C4mim]BF4 in MILWS, whereas in BAWS the unalterable nature of the organic solvent restricts the optimized pH for maximum selectivity between PAA and penicillin at pH 4. (2) The pH for 6-APA precipitation in BAWS is 4, whereas it shifts to pH 5 in MILWS due to the complexation between negatively charged 6-APA and the cationic surface of the ionic liquids micelle. As a result, the removal of the two products from the enzyme sphere at relatively high pH is permitted in MILWS, which is beneficial for enzymatic activity and stability in comparison with the acidic pH 4 environment in BAWS.  相似文献   

12.
The enzymatic selective acylations of carbohydrates in ionic liquids were explored in both organic solvents and ionic liquids to see any significant differences in terms of reactivity and regioselectivity between two different classes of reaction media. Monoprotected glycosides (methyl-6-O-trityl-glucosides and galactosides) were chosen as the substrates with Candida rugosa lipase as an acylation enzyme. Two organic solvents, THF and chloroform, and two ionic liquids, [BMIM]+PF6 ([BMIM]+ = 1-butyl-3-methylimidazolium) and [MOEMIM]+PF6 ([MOEMIM]+ = 1-methoxyethyl-3-methylimidazolium), were employed as reaction media. The enzymatic reactions were performed in the presence of vinyl acetate at room temperature. It was observed that the reactions in ionic liquids took place more rapidly and more selectively than those in conventional organic solvents.  相似文献   

13.
We report that a macrocyclic ligand enables transfer of a protein from an aqueous phase to ionic liquids. The extraction behavior of heme protein cytochrome c (Cyt-c) from an aqueous phase into ionic liquids was investigated with crown ethers. A hydroxyl-group-containing ionic liquid with dicyclohexano-18-crown-6 was found to be capable of quantitative partitioning of Cyt-c, whereas the protein transfer using conventional organic solvents was negligibly small. Furthermore, we clarified that Cyt-c solubilized in ionic liquids caused a structural transformation of Cyt-c, which triggers its functional conversion from an electron-transfer protein to peroxidase.  相似文献   

14.
The effect of a water-miscible ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), on the horseradish peroxidase (HRP)-catalyzed oxidation of 2-methoxyphenol (guaiacol) with hydrogen peroxide (H2O2) was investigated. HRP maintains its high activity in the aqueous mixtures containing various concentrations of the ionic liquid and even in 90% (v/v) ionic liquid. In order to minimize the effect of solution viscosity on the kinetic constants of HRP catalysis, the enzymatic reactions in the subsequent kinetic study were performed in water-ionic liquid mixtures containing 25% (v/v) ionic liquid at maximum. As the concentration of [BMIM][BF4] increased for the oxidation of guaiacol by HRP, the K(m) value increased with a slight decrease in the k(cat) value: The K(m) value increased from 2.8 mM in 100% (v/v) water to 22.5 mM in 25% (v/v) ionic liquid, indicating that ionic liquid significantly weakens the binding affinity of guaiacol to HRP.  相似文献   

15.
The kinetic resolution of racemates constitutes one major route to manufacture optically pure compounds. The enzymatic kinetic resolution of (R,S)-1-phenylethanol over Candida antarctica lipase B (CALB) by using vinyl acetate as the acyl donor in the acylation reaction was chosen as model reaction. A systematic screening and optimization of the reaction parameters, such as enzyme, ionic liquid and substrates concentrations with respect to the final product concentration, were performed. The enantioselectivity of immobilized CALB commercial preparation, Novozym 435, was assayed in several ionic liquids as reaction media. In particular, three different ionic liquids: (i) 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6], (ii) 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] and (iii) 1-ethyl-3-methylimidazolium triflimide [emim][NTf2] were tested. At 6.6% (w/w) of Novozym 435, dispersed in 9.520 M of [bmim][PF6] at 313.15 K, using an equimolar ratio of vinyl acetate/(R,S)-1-phenylethanol after 3 h of bioconversion, the highest possible conversion (50%) was reached with enantiomeric excess for substrate higher than 99%.  相似文献   

16.
The catalytic activity of α-chymotrypsin in the enzymatic peptide synthesis of N-acetyl-l-tryptophan ethyl ester with glycyl glycinamide was examined in ionic liquids and organic solvents. The water content in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([emim][FSI]) affected the initial rates of peptide synthesis and hydrolysis. The activity of α-chymotrypsin was influenced by a kind of anions consisting of the same cation, [emim], when an ionic liquid was used as a solvent. The initial rate of peptide synthesis was improved 16-fold by changing from an organic solvent, acetonitrile, to an ionic liquid, [emim][FSI], at 25 °C. The activity of α-chymotrypsin in the peptide synthesis in [emim][FSI] was 17 times greater than that in acetonitrile at 60 °C, although the activity of α-chymotrypsin in the peptide synthesis gradually decreased with an increase in reaction temperature in [emim][FSI], similar to organic solvents. Moreover, α-chymotrypsin exhibited activity in [emim][FSI] and [emim][PF6] at 80 °C.  相似文献   

17.
The activity of three different lipases, a glycosidase and a protease in ionic liquids has been studied. Ambient temperature ionic liquids are a new class of solvents that are nonvolatile and nonflammable and thus an interesting alternative to classical organic solvents. Monitoring the synthesis of a simple ester, all lipases were found to exhibit both excellent activity and stability in the non-polar ionic liquid 1-butyl-3-methylimidazohum hexaflurophosphate ([bmin][PF6], 1). Furthermore, β-galactosidase from E. coli and the Subtilisin protease SavinaseTM were both found to exhibit a hydrolytic activity in a 50% aqueous solution of the water-miscible ionic liquid 1-butyl-3-methyhmidazoUum tetra-fluoroborate ([bmin][BF4], 2) comparable to the activity observed in 50% aqueous solutions of ethanol and acetonitrile.  相似文献   

18.
Cellulose resource has got much attention as a promising replacement of fossil fuel. The hydrolysis of cellulose is the key step to chemical product and liquid transportation fuel. In this paper a serials of chloride, acetate, and formate based ionic liquids were used as solvents to dissolve cellulose. The cellulose regenerated from ILs was characterized by FTIR and X-ray powder diffraction. From the characterization and analysis, it was found that the original close and compact structure has changed a lot. After enzymatic hydrolysis, different kinds of ionic liquids (ILs) have different yields of the reducing sugar (TRS). They are 100%, 90.72%, and 88.92% from 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]), 1-butyl-3-methylimidazolium formate ([BMIM][HCOO]) respectively after enzymatic hydrolysis at 50 °C for 5 h. The results indicated that the yields and the hydrolysis rates were improved apparently after ILs pretreatment comparing with the untreated substrates.  相似文献   

19.
The catalytic activity of α-chymotrypsin in the enzymatic peptide synthesis of N-acetyl-l-tryptophan ethyl ester with glycyl glycinamide was examined in ionic liquids and organic solvents. The water content in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([emim][FSI]) affected the initial rates of peptide synthesis and hydrolysis. The activity of α-chymotrypsin was influenced by a kind of anions consisting of the same cation, [emim], when an ionic liquid was used as a solvent. The initial rate of peptide synthesis was improved 16-fold by changing from an organic solvent, acetonitrile, to an ionic liquid, [emim][FSI], at 25 °C. The activity of α-chymotrypsin in the peptide synthesis in [emim][FSI] was 17 times greater than that in acetonitrile at 60 °C, although the activity of α-chymotrypsin in the peptide synthesis gradually decreased with an increase in reaction temperature in [emim][FSI], similar to organic solvents. Moreover, α-chymotrypsin exhibited activity in [emim][FSI] and [emim][PF6] at 80 °C.  相似文献   

20.
Water immiscible ionic liquids as solvents for whole cell biocatalysis   总被引:9,自引:0,他引:9  
Whole cell biocatalysis can effectively be used for the production of enantiomerically pure compounds, but efficiency is often low. Toxicity and poor solubility of substrates and products are the main obstacles. In this study, water immiscible ionic liquids are shown to have no damaging effects on the cell membranes of Escherichia coli and Saccharomyces cerevisiae. Thus, they can be used as biocompatible solvents for microbial biotransformations exemplified by an increase in yield of chiral alcohol synthesis. As key point to the success of these processes, the distribution ratio of the reactants between the ionic liquid and the aqueous phase was identified. The use of ionic liquids as substrate reservoir and in situ extracting agent for the asymmetric reduction of various ketones resulted in an increase of chemical yield from <50% to 80-90% in simple batch processes. (R)-1-(4-chlorophenyl)ethanol was produced at a higher initial reaction rate in the biphasic system (>50 microM s(-1) L(-1)) compared to the aqueous system. This result demonstrates that good mass transfer rates can be obtained despite the relatively high viscosity of ionic liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号