首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
S P Welch  K G Olson 《Life sciences》1991,48(19):1853-1861
Synaptosomes were prepared from morphine-tolerant and non-tolerant mice. Significantly higher levels of basal free intracellular calcium were observed in the synaptosomes from the opiate-tolerant mice compared to synaptosomes from non-tolerant mice (468 nM versus 328 nM, respectively). In addition, morphine (1 microM) failed to attenuate KCl-induced rises in intracellular calcium in the synaptosomes from the tolerant mice. Conversely, morphine produced a concentration-related, naloxone-reversible attenuation of 50 mM KCl-induced rises in intracellular calcium in the synaptosomes from the non-tolerant mice. Omega conotoxin, which blocks both "L" and "N" type calcium channels, attenuated KCl-stimulated rises in intracellular calcium only in synaptosomes from non-tolerant mice. BAY-K 8644, an "L-type" calcium channel agonist, produced nifedipine-reversible increases in intracellular calcium in the synaptosomes from the tolerant animals only. These data suggest that chronic exposure to morphine results in an alteration in either the number of the activation state of calcium channels in the membrane. Changes in intracellular free calcium may be the final common pathway through which neurons adapt to the chronic exposure to morphine.  相似文献   

2.
Gamma irradiation (60Co) reduced KCl-stimulated voltage-dependent 45Ca2+ uptake in whole-brain, cortical, and striatal synaptosomes. The time course (3, 10, 30, and 60 s) of calcium uptake by irradiated (3 Gy) and nonirradiated synaptosomes, as well as the effect of KCl (15-65 mM), was measured in whole-brain synaptosomes. The fastest and highest rate of depolarization-dependent calcium uptake occurred at 3 s with 65 mM KCl. Irradiation reduced calcium uptake at all incubation times and KCl concentrations. Bay K 8644 enhancement of KCl-stimulated calcium influx was also reduced by radiation exposure. Nimodipine binding to dihydropyridine (DHP) L-type calcium channel receptors was not altered following radiation exposure. These results demonstrate an inhibitory effect of ionizing radiation on the voltage-sensitive calcium channels in rat brain synaptosomes that are not mediated by DHP receptors.  相似文献   

3.
In this report, two changes that occur in the presynaptic terminal following induction of long-term potentiation in the dentate gyrus are examined, and the results demonstrate that the same changes are stimulated by the putative retrograde messenger arachidonic acid. First, there is an increase in the concentration of intracellular calcium in synaptosomes prepared from potentiated tissue compared with control tissue. This effect on intracellular calcium concentration was mimicked in control tissue by treatment of synaptosomes with either arachidonic acid or inositol 1,4,5-trisphosphate in a dose-dependent but nonadditive manner. Second, there is an increase in phosphoinositide turnover in synaptosomes prepared from potentiated tissue compared with control tissue, and this change can also be mimicked in control tissue by exposure of synaptosomes to arachidonic acid. These findings are consistent with the hypothesis that the increase in glutamate release associated with long-term potentiation may be stimulated by arachidonic acid, as a result of an increase in intrasynaptosomal calcium concentration, perhaps occurring as a result of arachidonate-stimulated phosphoinositide metabolism.  相似文献   

4.
Alzheimer's disease is characterized by amyloid beta-peptide deposition, synapse loss, and neuronal death, which are correlated with cognitive impairments. Mutations in the presenilin-1 gene on chromosome 14 are causally linked to many cases of early-onset inherited Alzheimer's disease. We report that synaptosomes prepared from transgenic mice harboring presenilin-1 mutations exhibit enhanced elevations of cytoplasmic calcium levels following exposure to depolarizing agents, amyloid beta-peptide, and a mitochondrial toxin compared with synaptosomes from nontransgenic mice and mice overexpressing wild-type presenilin-1. Mitochondrial dysfunction and caspase activation following exposures to amyloid beta-peptide and metabolic insults were exacerbated in synaptosomes from presenilin-1 mutant mice. Agents that buffer cytoplasmic calcium or that prevent calcium release from the endoplasmic reticulum protected synaptosomes against the adverse effect of presenilin-1 mutations on mitochondrial function. Abnormal synaptic calcium homeostasis and mitochondrial dysfunction may contribute to the pathogenic mechanism of presenilin-1 mutations.  相似文献   

5.
Ca2+-sensitive minielectrodes and the fluorescent cytosolic calcium probes, quin2 and fura2, were used to study some aspects of calcium homeostasis in intact and permeabilized synaptosomes from whole rat brain. Experiments in permeabilized synaptosomes revealed the existence of a vesicular, non-mitochondrial, ATP-dependent calcium uptake system with a vanadate sensitivity similar to that of brain microsomes, or endoplasmic reticulum-type calcium sequestering organelles. By using the fluorescent probes it was possible to show that caffeine mobilizes calcium from these internal stores in intact synaptosomes. Our results indicate a role of the caffeine sensitive calcium stores in the buffering of calcium loads elicited by plasma membrane depolarization.  相似文献   

6.
Fluorescent indicator Quin-2 was used for the determination of free calcium (Ca2+in) in synaptosomes incubated in the normal medium and media where sodium is replaced by potassium or choline. At external calcium concentration of 1 mM, Ca2+in in all three media was 20-30% higher in synaptosomes of spontaneously hypertensive rats (SHR) than in control animals. At external calcium concentration of 5 mM, the increase in Ca2+in values induced by K+-depolarization in sodium- or choline-containing media was 50-80% higher in synaptosomes of SHR. These differences are suggested to be the basis for the mechanism of increased peripheral chain activity in the sympathetic nervous system in primary hypertension.  相似文献   

7.
The accumulation of 3H-choline by isolated synaptosomes from the central nervous system of locust was studied at concentrations varying from 0.05 to 40μM. Kinetic analysis of the saturable process revealed a high-affinity and a low-affinity system. The high-affinity uptake was competitively inhibited by hemicholinium-3 and was absolutely dependent on external sodium. Elevated potassium concentrations inhibited choline uptake. The choline uptake by insect synaptosomes was found to be remarkably resistant to a variety of metabolic inhibitors. The reduced choline uptake under depolarizing conditions (high potassium concentration or veratridine) in the absence of calcium implies that electrochemical gradients are important for high-affinity choline uptake. Depolarization of preloaded synaptosomes under appropriate conditions resulted in a significant release of newly accumulated choline radioactivity.  相似文献   

8.
In depolarised anoxic synaptosomes, in which lactate production was significantly raised compared with normoxic conditions, calcium uptake, net acetylcholine release, and the intrasynaptosomal calcium concentration were all significantly lowered. In contrast, lactate production in synaptosomes incubated under aglycaemic- and ischaemic-type conditions was significantly lower and basal calcium uptake, acetylcholine release, and intrasynaptosomal calcium concentration were elevated compared with normoxia. In addition, the increase in intrasynaptosomal calcium concentration under the ischaemic-type condition appeared to be greater than could be accounted for by the rise in calcium uptake alone. Intrasynaptosomal pH reflected the lactate production under each condition investigated. Addition of exogenous lactate to normoxic synaptosomes mimicked the effects observed in anoxia, suggesting that lactate itself may have blocked the calcium uptake, inhibiting the rise in intrasynaptosomal calcium and acetylcholine release occurring in depolarised anoxic synaptosomes. When lactate was added to ischaemic synaptosomes, the large rise in intrasynaptosomal calcium concentration, calcium uptake, and acetylcholine release were decreased, suggesting that lactate may have a protective role in preventing cell death by calcium overload under ischaemic-type conditions. Evidence is presented to suggest that the effect of L-lactate was due to the lactate moiety itself rather than the associated acidosis.  相似文献   

9.
Temporal changes in the phosphorylation level of synaptosomal phosphoproteins following depolarization of synaptosomes were investigated under conditions restricting calcium influx. High-K+ depolarization in media of low [Na+]o (32 mM during preincubation and depolarization) at pH 6.5 resulted in a pronounced fall in the cytosolic free calcium concentration transient, and in a reduction in the initial K(+)-stimulated 45Ca2+ uptake and endogenous acetylcholine release relative to the values obtained with control synaptosomes (preincubated and depolarized in Na(+)-based media). This reduction was paralleled by a decrease in the rate of dephosphorylation of the synaptosomal protein P96. A slower dephosphorylation of P96 also was observed on exposure to 20 microM veratridine at 0.5 mM external calcium. Our results indicate that, similar to synapsin I phosphorylation, P96 dephosphorylation shows a graded response to the amount of calcium entering the presynaptic terminal. Depolarization of synaptosomes under conditions restricting the influx of calcium revealed a transient dephosphorylation (reversed within 10 s) of the phosphoprotein P65. The possible significance of this finding to the process of neurotransmitter release is discussed.  相似文献   

10.
The effect of veratridine-mediated depolarization on rat brain synaptosomal respiration in the presence and absence of calcium was investigated. Studies on respiration were performed employing three different pretreatments of the synaptosomes which attempted to deplete endogenous substrates. First, synaptosomes were preincubated for 10 min in the absence of any substrates in medium either containing or devoid of calcium. Second, synaptosomes were preincubated for either 15 or 60-min periods in the presence and absence of calcium, and the incubation medium was changed by centrifugation and resuspension of synaptosomes in their respective media. Irrespective of the prior treatment, maximal stimulation of respiration (400-600%) during veratridine (100 microM) elicited depolarization was observed only when calcium was present in the incubation media. In incubations performed in the absence of calcium, veratridine addition either modestly stimulated (10- and 15-min preincubated synaptosomes) or did not affect (60-min preincubated synaptosomes) the rate of respiration. However, when calcium was added back to these incubations the rate of respiration in the presence of veratridine was stimulated by five- to six-fold. Similarly, the rates of 14CO2 production from [1-14C]- and [2-14C]pyruvate were increased by veratridine only when synaptosomes were incubated in calcium-replete medium. These data indicate that calcium plays an obligatory role in depolarization-elicited stimulation of synaptosomal oxidative processes.  相似文献   

11.
Possible interactions between alpha-latrotoxin, an activator of synaptosomal calcium uptake, and omega-conotoxin GVIA, an inhibitor of voltage-sensitive calcium channels of the N-type, were investigated in rat and chicken synaptosomal preparations. While omega-conotoxin GVIA potently and effectively inhibited calcium uptake induced by elevated potassium in chick synaptosomes, little or no effect of omega-conotoxin GVIA was observed either in potassium-treated rat synaptosomes or in alpha-latrotoxin-exposed synaptosomes of either spaces. In contrast to the lack of effect of omega-conotoxin on stimulated calcium uptake in rat synaptosomes, cadmium effectively inhibited calcium uptake induced by either potassium or alpha-latrotoxin. Synaptosomal calcium transport induced by alpha-latrotoxin can be bidirectional, since alpha-latrotoxin also induced efflux of preaccumulated calcium. Competition experiments revealed that binding of 125I-labelled omega-conotoxin and 125I-labelled alpha-latrotoxin was similar in either chicken or rat synaptosomes. Neither alpha-latrotoxin nor omega-conotoxin competed with the binding of the other ligand in either species. The results reported here show that (1) elevated potassium evokes calcium uptake principally through N-channels in avian but not in rat synaptosomes; (2) alpha-latrotoxin-activated calcium fluxes are omega-conotoxin insensitive but cadmium sensitive; (3) the molecular acceptors for the two ligands are likely to be unrelated synaptic membrane constituents.  相似文献   

12.
The ability of synaptosomes subjected to oxidative stress, to maintain homeostasis has been evaluated using various indices of cellular integrity. These include levels of cytosolic calcium and leakiness of the plasma membrane. The status of a neural characteristic; depolarization-induced calcium entry into the cytoplasm, has also been studied. The presence of 5 μM FeSO4 and 0.1 mM ascorbic acid increased peroxidative activity as judged by the rate of thiobarbituric acid reactive material production, and depressed levels of free ionic calcium [Ca2+]i as determined using the calcium-sensitive flouorescent indicator dye fura-2. Depolarization-induced influx of 45Ca2+ was greatly depressed under these conditions, while basal calcium uptake was inhibited to a much lesser degree. The efflux of fura-2 from synaptosomes was enhanced in the oxidizing environment, suggesting increased permeability of the synaptosomal outer limiting membrane.

The treatment of synaptosomes with 25 μM -tocopherol succinate before and during exposure to the Fe2+/ascorbate mixture prevented many of the changes otherwise induced by the oxidizing system. Similar pretreatment with β-carotene or superoxide dismutase did not have any protective effect. Ganglioside GM1 pre-exposure did not alter the Fe2+/ascorbate-induced changes in calcium-related parameters, but mitigated synaptosomal plasma membrane damage as judged by fura-2 leakage. Thus exogenous agents may be capable of reducing the severity of oxidative stress in nervous tissue.  相似文献   


13.
Terbium binding to synaptosomes from the central nervous system of the locust was studied by fluorescence spectroscopy and electron microscopy. The protein-sensitized fluorescence of terbium was used to characterize the calcium binding sites of synaptosomes. As judged by electron microscopy and x-ray analysis, terbium ions produced electron-dense patches in regular arrays on the outer surface of synaptosomal membranes and induced marked aggregation of synaptic vesicles in isolated terminals.  相似文献   

14.
The goal of this study was to investigate the isolated and combined effect of ebselen and Hg2+ on calcium influx and on glutamatergic system. We examined the in vitro effects of 2 phenyl-1,2-benzisoselenazol-3(2H)-ona), (Ebselen) on 45Ca2+ influx in synaptosomes of rat at rest and during depolarization and glutamate uptake into synaptosomes. Entry of 45Ca was measured during exposure to mercury in non-depolarizing and depolarizing solutions. Ebselen abolished the inhibition of 45Ca2+ influx on non-depolarizing conditions; however, ebselen did no modify inhibition uptake of 45Ca2+ caused by Hg2+ in high K+ depolarizing medium. Ebselen did not modify glutamate uptake inhibition caused by Hg2+ in synaptosomes. These results indicate that ebselen has an in vitro protective effect against Hg2+ induced inhibition of Ca2+ influx into synaptosomes, depending on the depolarizing conditions of the assay. The effects of Hg2+ on glutamate uptake were not modified by ebselen, suggesting that its protection is dependent on the target protein considered.  相似文献   

15.
R A Harris  D Fenner  S W Leslie 《Life sciences》1983,32(23):2661-2666
Several physiological stimuli, including neuronal depolarization, increase the production of phosphatidate (PA) from phosphatidylinositol (PI) and increase calcium fluxes across cell membranes. To determine if breakdown of PI is required for neuronal calcium uptake, we tested inhibitors of PI-specific phospholipase C on depolarization-dependent uptake of calcium by isolated brain synaptosomes. At a concentration of 0.1 mM these inhibitors reduced calcium uptake produced by depolarization for 1 to 3 sec, but did not affect uptake due to more prolonged depolarization. Exogenous PA also stimulated calcium accumulation by synaptosomes and this uptake was not reduced by the enzyme inhibitors. These results suggest that the rapid calcium influx produced by neuronal depolarization may be mediated by the breakdown of PI.  相似文献   

16.
Abstract: We have investigated three aspects of the relationship between calcium and tyrosine hydroxylase activity in rat striatum. In the first series of experiments, we examined the hypothesis that the rise in dopamine synthesis during increased impulse flow results from a calcium-induced activation of tyrosine hydroxylase. Calcium (12.5–200 μ M ) had no effect when added to crude enzyme or enzyme partially purified by gel filtration. Moreover, incubation of synaptosomes with excess calcium (up to 3.5 m M ) had little or no effect on dopamine synthesis. Incubation with the depolarizing alkaloid veratridine (75 μ M ) did increase dopamine synthesis, but did not alter the activity of tyrosine hydroxylase subsequently prepared from the synaptosomes, despite the presumed rise in intracellular calcium. In the second series we examined the hypothesis that increased dopamine synthesis after axotomy results from activation of tyrosine hydroxylase owing to a decrease in intracellular calcium. Addition of the calcium chelator EGTA (100 μ M ) to crude or partially purified enzyme was without effect, whereas incubation of synaptosomes with EGTA (500 μM ) decreased cell-free enzyme activity. In the third experimental series we examined the relationship between calcium and activation of tyrosine hydroxylase by dibutyryl cyclic AMP. EGTA failed to alter the increase in the activity of tyrosine hydroxylase prepared from synaptosomes incubated with dibutyryl cyclic AMP. However, it blocked the increase in synaptosomal dopamine synthesis and dopamine content normally produced by the cyclic AMP analogue. Thus, tyrosine hydroxylase does not appear to be activated by either increases or decreases in calcium availability. However, calcium may be important for the maintenance of basal tyrosine hydroxylase activity, and may play an indirect role in the expression of tyrosine hydroxylase activation produced by other means.  相似文献   

17.
The paper deals with characteristics of ionic alpha-latrotoxin-induced permeability of rat brain synaptosomes. It has been shown that the addition of alpha-latrotoxin to synaptosomes in the Ca2+-containing media resulted in an extensive and rapid uptake of 45Ca2+ in synaptosomes. alpha -Latrotoxin was not able to enhance the 22Na+ and 86Rb+ uptake or efflux in the Ca2+-containing and Ca2+- and Mg2+-free media. The dye di-O-C3 was used to monitor the membrane potential changes as a consequence of alpha-latrotoxin treatment of synaptosomes. It has been found that alpha-latrotoxin increased synaptosomal fluorescence in the Ca2+-containing media, but failed to induce any increase of fluorescence in Ca2+- and Mg2+-free media. It has been also shown that the calcium uptake induced by alpha-latrotoxin depends on free calcium concentration in synaptosomes. Toxin-induced calcium flows are shown to be of the vector character.  相似文献   

18.
By the use of digitonin permeabilized presynaptic nerve terminals (synaptosomes), we have found that intrasynaptic mitochondria, when studied "in situ," i.e., surrounded by their cytosolic environment, are able to buffer calcium in a range of calcium concentrations close to those usually present in the cytosol of resting synaptosomes. Adenine nucleotides and polyamines, which are usually lost during isolation of mitochondria, greatly improve the calcium-sequestering activity of mitochondria in permeabilized synaptosomes. The hypothesis that the mitochondria contributes to calcium homeostasis at low resting cytosolic free calcium concentration ([Ca2+]i) in synaptosomes has been tested; it has been found that in fact this is the case. Intrasynaptic mitochondria actively accumulates calcium at [Ca2+]i around 10(-7) M, and this activity is necessary for the regulation of [Ca2+]i. When compared with other membrane-limited calcium pools, it was found that depending on external concentration the calcium pool mobilized from mitochondria is similar or even greater than the IP3- or caffeine-sensitive calcium pools. In summary, the results presented argue in favor of a more prominent role of mitochondria in regulating [Ca2+]i in presynaptic nerve terminals, a role that should be reconsidered for other cellular types in light of the present evidence.  相似文献   

19.
Under conditions minimizing the contribution of Na+/Ca2+ exchange to calcium entry in synaptosomes, the K+ depolarization-dependent calcium influx (JCa) is a single exponential function of time. JCa activates and slowly inactivates at membrane potentials positive to -50 mV, a result indicating the involvement of moderate voltage-activating, slowly inactivating calcium channels. Calcium channels in synaptosomes are characterized by stronger sensitivity to blockage by Cd2+ than Co2+, insensitivity to dihydropyridine calcium antagonists or the agonist Bay K 8644, and weak, partial sensitivity to the peptide toxin omega-conotoxin GVIA. These characteristics suggest that voltage-sensitive calcium channels in rat cerebrocortical synaptosomes are dissimilar from the somatic T, N, or L channel types. JCa is not affected by treatment of synaptosomes with the adenylate cyclase activator forskolin, the membrane permeant dibutyryl-cyclic AMP, or the kinase C activator phorbol 12-myristate 13-acetate diester, results suggesting that calcium channels in synaptosomes are not directly modulated by protein kinase A- or C-mediated phosphorylation.  相似文献   

20.
Effect in vitro of propoxur on the specific activity of calcium stimulated ATPase and calcium uptake was studied in the rat brain synaptosomes. The data suggest that propoxur might disrupt the synaptic function by altering the calcium dependent ATP hydrolysis and calcium uptake in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号