首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons.   总被引:2,自引:1,他引:1  
The oscillatory properties of single thalamocortical neurons were investigated by using a Hodgkin-Huxley-like model that included Ca2+ diffusion, the low-threshold Ca2+ current (lT) and the hyperpolarization-activated inward current (lh). lh was modeled by double activation kinetics regulated by intracellular Ca2+. The model exhibited waxing and waning oscillations consisting of 1-25-s bursts of slow oscillations (3.5-4 Hz) separated by long silent periods (4-20 s). During the oscillatory phase, the entry of Ca2+ progressively shifted the activation function of lh, terminating the oscillations. A similar type of waxing and waning oscillation was also observed, in the absence of Ca2+ regulation of lh, from the combination of lT, lh, and a slow K+ current. Singular approximation showed that for both models, the activation variables of lh controlled the dynamics of thalamocortical cells. Dynamical analysis of the system in a phase plane diagram showed that waxing and waning oscillations arose when lh entrained the system alternately between stationary and oscillating branches.  相似文献   

2.
Isolated and cultured neonatal cardiac myocytes contract spontaneously and cyclically. The contraction rhythms of two isolated cardiac myocytes, each of which beats at different frequencies at first, become synchronized after the establishment of mutual contacts, suggesting that mutual entrainment occurs due to electrical and/or mechanical interactions between two myocytes. The intracellular concentration of free Ca(2+) also changes rhythmically in association with the rhythmic contraction of myocytes (Ca(2+) oscillation), and such a Ca(2+) oscillation was also synchronized among cultured cardiac myocytes. In this study, we investigated whether intercellular communication other than via gap junctions was involved in the intercellular synchronization of intracellular Ca(2+) oscillation in spontaneously beating cultured cardiac myocytes. Treatment with either blockers of gap junction channels or an un-coupler of E-C coupling did not affect the intercellular synchronization of Ca(2+) oscillation. In contrast, treatment with a blocker of P2 purinoceptors resulted in the asynchronization of Ca(2+) oscillatory rhythms among cardiac myocytes. The present study suggested that the extracellular ATP-purinoceptor system was responsible for the intercellular synchronization of Ca(2+) oscillation among cardiac myocytes.  相似文献   

3.
Intracellular Ca2+ oscillations are observed in a large number of non-excitable cells. While most appear to reflect an intermittent Ca2+ release from intracellular stores, in some instances intracellular Ca2+ oscillations strongly depend on Ca2+ influx, and are coupled to oscillations of the membrane potential, suggesting that a plasma membrane-based mechanism may be involved. We have developed a theoretical model for the latter type of intracellular Ca2+ oscillations based on the Ca2+-dependent modulation of the intermediate-conductance, Ca2+-activated K+ (IKCa) channel. The functioning of this model relies on the Ca2+-dependent activation, and the much slower Ca2+-dependent rundown of this channel. We have shown that Ca2+-dependent activation of the IKCa channels, the consequent membrane hyperpolarization and the resulting increase in Ca2+ influx may confer the positive feedback mechanism required for the ascending phase of the oscillation. The much slower Ca2+-dependent rundown process will conversely halt this positive loop, and establish the descending phase of the intracellular Ca2+ oscillation. We found that this simple model gives rise to intracellular Ca2+ oscillations when using physiologically reasonable parameters, suggesting that IKCa channels could participate in the generation of intracellular Ca2+ oscillations.  相似文献   

4.
Measurements of the intracellular free concentration of Ca2+ ([Ca2+]i) were performed during fatiguing stimulation of intact, single muscle fibers, which were dissected from a mouse foot muscle and loaded with fura-2. Fatigue, which was produced by repeated 100-Hz tetani, generally occurred in three phases. Initially, tension declined rapidly to approximately 90% of the original tension (0.9 Po) and during this period the tetanic [Ca2+]i increased significantly (phase 1). Then followed a lengthy period of almost stable tension production and tetanic [Ca2+]i (phase 2). Finally, both the tetanic [Ca2+]i and tension fell relatively fast (phase 3). The resting [Ca2+]i rose continuously throughout the stimulation period. A 10-s rest period during phase 3 resulted in a significant increase of both tetanic [Ca2+]i and tension, whereas a 10-s pause during phase 2 did not have any marked effect. Application of caffeine under control conditions and early during phase 2 resulted in a substantial increase of the tetanic [Ca2+]i but no marked tension increase, whereas caffeine applied at the end of fatiguing stimulation (tension depressed to approximately 0.3 Po) gave a marked increase of both tetanic [Ca2+]i and tension. The tetanic [Ca2+]i for a given tension was generally higher during fatiguing stimulation than under control conditions. Fatigue developed more rapidly in fibers exposed to cyanide. In these fibers there was no increase of tetanic [Ca2+]i during phase 1 and the increase of the resting [Ca2+]i during fatiguing stimulation was markedly larger. The present results indicate that fatigue produced by repeated tetani is caused by a combination of reduced maximum tension-generating capacity, reduced myofibrillar Ca2+ sensitivity, and reduced Ca2+ release from the sarcoplasmic reticulum. The depression of maximum tension-generating capacity develops early during fatiguing stimulation and it is of greatest importance for the force decline at early stages of fatigue. As fatigue gets more severe, reduced Ca2+ sensitivity and reduced Ca2+ release become quantitatively more important for the tension decline.  相似文献   

5.
Cytosolic free calcium spiking affected by intracellular pH change   总被引:1,自引:0,他引:1  
The characteristics underlying cytosolic free calcium oscillation were evaluated by superfused dual wave-length microspectrofluorometry of fura-2-loaded single acinar cells from rat pancreas. Application of a physiological concentration of cholecystokinin octapeptide (CCK) (20 pM) induced a small basal increase in cytosolic free calcium concentration ([Ca2+]i) averaging 34 nM above the prestimulation level (69 nM) with superimposed repetitive Ca2+ spike oscillation. The oscillation amplitude averaged 121 nM above the basal increase in [Ca2+]i and occurred at a frequency of one pulse every 49 s. Although extracellular Ca2+ was required for maintenance of high frequency and amplitude of the spikes with increase in basal [Ca2+]i, the primary source utilized for oscillation was intracellular. The threshold of the peak [Ca2+]i amplitude for causing synchronized and same-sized oscillations was less than 300 nM. The [Ca2+]i oscillation was sensitive to intracellular pH (pHi) change. This is shown by the fact that the large pHi shift toward acidification (delta pHi decrease, 0.95) led to a basal increase in [Ca2+]i to the spike peak level with inhibiting Ca2+ oscillation. The pHi shift toward alkalinization (delta pHi increase, 0.33) led to a basal decrease in [Ca2+]i to the prestimulation level, possibly due to reuptake of Ca2+ into the Ca2+ stores, with inhibiting Ca2+ oscillation. Whereas extracellular pH (pHo) change had only minimal effects on Ca2+ oscillation (and/or Ca2+ release from intracellular stores), the extra-Ca2+ entry process, which was induced by higher concentrations of CCK, was totally inhibited by decreasing pHo from 7.4 to 6.5. Thus the major regulatory sites by which H+ affects Ca2+ oscillation are accessible from the intracellular space.  相似文献   

6.
The effects of different illumination conditions on the main parameters of the circadian motor rhythms of the two chelipeds of the crayfish, Procambarus digueti , were compared. Under either constant darkness (DD) or constant light (LL) the phase relationship between the two circadian rhythms was more stable than under entrained conditions (LD cycles). These results suggest that the oscillators responsible for these rhythms differ in their sensitivity to light. The role of paired organs in the internal temporal order of the crayfish is discussed.  相似文献   

7.
The effects of different illumination conditions on the main parameters of the circadian motor rhythms of the two chelipeds of the crayfish, Procambarus digueti, were compared. Under either constant darkness (DD) or constant light (LL) the phase relationship between the two circadian rhythms was more stable than under entrained conditions (LD cycles). These results suggest that the oscillators responsible for these rhythms differ in their sensitivity to light. The role of paired organs in the internal temporal order of the crayfish is discussed.  相似文献   

8.
三磷酸肌醇影响钙释放的数学模型研究   总被引:1,自引:1,他引:1  
此模型主要说明激动剂诱发的Ca^2 振荡实验中Ca^2 释放的若干特征。模型假设内质网(ER)上三磷酸肌醇(IP3)受体/Ca^2 通道是由相互独立的三亚基组成,每个亚基可以结合IP3或促进或报制Ca^2 释放。可看出IP3受体/Ca^2 通道随Ca^2 变化成钟形反应、随IP3的变化呈上升趋势。Ca^2 振荡的频率和振幅与Ca^2 依赖性IP3的最大泵入速率(V6)有很大关系。当Ca^2 振荡时v6变化较敏感时,Ca^2 振荡的振幅与v6有近似的线性关系。扩展的模型可分析IP3对钙依赖不同程度下的情况。  相似文献   

9.
Summary The spatial and temporal pattern of oscillating temperatures on the cell surface of a plasmodial strand ofPhysarum polycephalum was measured with a sensitive thermal image camera. The longitudinal tension of the strand was studied simultaneously. In the absence of chemical stimulation, the phases of the temperature oscillation observed at various portions of the strand were entrained with almost coincidental phase. The temperature and tension oscillation were synchronized, although the phase difference between them was occasionally changed. With local chemical stimulation, the phase of the temperature oscillation advanced in the portion to which the plasmodium would be induced to migrate. The phases between temperature and tension oscillations then became constant. The mechanism by which the plasmodium processes local information of chemical stimulus to global information for the migration is discussed.  相似文献   

10.
Evans JH  Sanderson MJ 《Cell calcium》1999,26(3-4):103-110
The effect of ATP-induced Ca2+ oscillations on ciliary activity was examined in airway epithelial cells by simultaneously measuring the ciliary beat frequency (CBF) and the intracellular Ca2+ concentration ([Ca2+]i) near the base of the cilia. Exposure to extracellular ATP (ATPo) induces a rapid and large increase in both [Ca2+]i and CBF, followed by oscillations in [Ca2+]i and a sustained elevation in CBF. After each Ca2+ oscillation, the [Ca2+]i returned to near basal values. By contrast, the CBF remained elevated during these Ca2+ oscillations, although each Ca2+ oscillation induced small variations in CBF. During Ca2+ oscillations, increases in CBF closely followed the rising phase of increases in [Ca2+]i, but declines in CBF lagged behind declines in [Ca2+]i. Higher frequency Ca2+ oscillations reduced variations in CBF, producing a stable and sustained elevation in CBF. The maximal CBF was induced by Ca2+ oscillations and was 15% greater than the CBF induced by the substantially larger initial [Ca2+]i increase. These data demonstrate that the rate of CBF is not directly dependent on the absolute [Ca2+]i, but is dependent on the differential changes in [Ca2+]i and suggest that CBF in airway epithelial cells is regulated by frequency-modulated Ca2+ signaling.  相似文献   

11.
The response of HeLa cells to histamine H1 receptor stimulation is characterized by periodic increases in cytosolic free Ca2+ concentration. The mechanisms underlying this oscillatory behaviour are not well understood. Fura-2 and patch clamp experiments carried out on HeLa cells have previously shown: (a) that Ca2+ oscillations are not initially dependent on the presence of external Ca2+, that external Ca2+ is required to maintain the oscillatory activity; (b) that a depolarization of the cell membrane leads to an inhibition of Ca2+ oscillations during the external Ca2+ dependent phase of the process; and (c) that Ca2+ oscillations can be abolished during this latter phase by the exogenous addition of Ca2+ channel blocking agents, such as Co2+ or La3+. The contribution of the inositol phosphate pathway to Ca2+ oscillations was more recently investigated in whole cell experiments performed with patch pipettes containing IP3 or the non-hydrolysable GTP analogue GTP-gamma S. Clear periodic current fluctuations were recorded using both patch pipette solutions. Assuming that the intracellular IP3 level remained constant under these conditions, these findings provide direct evidence that the Ca2+ oscillations in HeLa cells do not arise from a periodic production of IP3. The effect of the internal and external cell pH on the oscillatory process was also investigated in Fura-2 and patch clamp experiments. It was found that an increase in intracellular pH from 7.4 to 7.7 during the external Ca2+ dependent phase of the histamine stimulation abolishes the appearance of Ca2+ spikes whereas, a cellular acidification to pH 7.2 maintains or stimulates the Ca2+ oscillatory activity. The former effect was observed in the absence of Ca2+ in the bathing medium, indicating that the inhibitory action of alkaline pH was not related to a reduced Ca2+ entry. An increase in extracellular pH from 7.3 to 9.0 in contrast elicited an intracellular Ca2+ accumulation which resulted in most cases in an inhibition of the oscillatory process. This effect was dependent on external Ca2+ and was observed in alkaline internal pH conditions (pH 7.7). These observations suggest: (a) that the net Ca2+ influx in HeLa cells is strongly dependent on the cell internal and external pH; and (b) that the magnitude of this Ca2+ influx controls to a large extent the oscillation frequency. Finally, an inhibition of the histamine induced Ca2+ oscillatory activity was observed following the addition of the Ca(2+)-induced Ca(2+)-release (CICR) inhibitor adenine to the external medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Hormones and neurotransmitters that act through inositol 1,4,5-trisphosphate (IP3) can induce oscillations of cytosolic Ca2+ ([Ca2+]c), which render dynamic regulation of intracellular targets. Imaging of fluorescent Ca2+ indicators located within intracellular Ca2+ stores was used to monitor IP3 receptor channel (IP3R) function and to demonstrate that IP3-dependent oscillations of Ca2+ release and re-uptake can be reproduced in single permeabilized hepatocytes. This system was used to define the minimum essential components of the oscillation mechanism. With IP3 clamped at a submaximal concentration, coordinated cycles of IP3R activation and subsequent inactivation were observed in each cell. Cycling between these states was dependent on feedback effects of released Ca2+ and the ensuing [Ca2+]c increase, but did not require Ca2+ re-accumulation. [Ca2+]c can act at distinct stimulatory and inhibitory sites on the IP3R, but whereas the Ca2+ release phase was driven by a Ca2+-induced increase in IP3 sensitivity, Ca2+ release could be terminated by intrinsic inactivation after IP3 bound to the Ca2+-sensitized IP3R without occupation of the inhibitory Ca2+-binding site. These findings were confirmed using Sr2+, which only interacts with the stimulatory site. Moreover, vasopressin induced Sr2+ oscillations in intact cells in which intracellular Ca2+ was completely replaced with Sr2+. Thus, [Ca2+]c oscillations can be driven by a coupled process of Ca2+-induced activation and obligatory intrinsic inactivation of the Ca2+-sensitized state of the IP3R, without a requirement for occupation of the inhibitory Ca2+-binding site.  相似文献   

13.
The relationships between changes in intracellular Ca2+ and smooth muscle tension triggered by endothelin-1 and the selective endothelin ETB receptor agonist sarafotoxin S6c, as well as their susceptibility to modification by the nonselective cyclooxygenase blocker indomethacin, were assessed in guinea pig isolated gallbladder strips. Cumulative additions of either agonist (1, 10, and 100 nM) induced simultaneous graded, strongly correlated, slowly developing, and sustained changes in tension and intracellular Ca+2 (Fura-2 technique). Sarafotoxin S6c was more effective than endothelin-1 in raising intracellular Ca2+ at 1 or 10 nM, but their abilities to cause contractions were similar at all concentrations. Indomethacin (5.6 microM) markedly inhibited the changes in both intracellular Ca2+ and tension caused by all concentrations of sarafotoxin S6c (in response to 100 nM, increases in Ca2+ fluorescence intensity and tension were inhib ited from 7.7 +/- 0.7 to 4.0 +/- 0.4% and from 460 +/- 100 to 160 +/- 40 mg, respectively) but only reduced the contraction triggered by 100 nM endothelin-1 (from 560 +/- 100 to 230 +/- 70 mg). Endothelin-1 caused greater prostacyclin release from gallbladder than sarafotoxin S6c (at 100 nM, 6-keto-PGF1alpha levels in the medium rose 4.8- and 2.8-fold, respectively; P < 0.05) and slightly increased thromboxane A2 release (1.6-fold; P < 0.05). Thus, gallbladder contractions triggered by combined ETA/ETB or selective ETB receptor stimulation (with endothelin-1 or sarafotoxin S6c, respectively) are strongly correlated with increases in intracellular Ca2+ but differentially affected by indomethacin. It remains to be assessed if this difference is because endothelin-1 triggers greater prostacyclin release than sarafotoxin S6c and (or) is due to the coupling of ETA and ETB receptors to distinct patterns of generation of cyclooxygenase-derived eicosanoids.  相似文献   

14.
The mechanisms of Ca2+ level regulation in the cytoplasm by neurotransmitters, hormones, and growth factors and described. The role of G-proteins, second messengers and protein kinases in the regulation of activity of Ca2+ channels and pumps is discussed. The contributions of the endoplasmic reticulum, plasma membrane, nucleus, mitochondria and other intercellular compartments to the increase in the cytoplasmic Ca2+ concentration are estimated. The data concerning the relationships between the activities of systems of active and passive Ca2+ transport across the membrane are reviewed. The general mechanisms of intracellular Ca2+ oscillation are summarized, and a possible role of this process in the neuroendocrine signal transduction is discussed.  相似文献   

15.
Stimulation through the antigen receptor (TCR) of T lymphocytes triggers cytosolic calcium ([Ca2+]i) oscillations that are critically dependent on Ca2+ entry across the plasma membrane. We have investigated the roles of Ca2+ influx and depletion of intracellular Ca2+ stores in the oscillation mechanism, using single-cell Ca2+ imaging techniques and agents that deplete the stores. Thapsigargin (TG; 5-25 nM), cyclopiazonic acid (CPA; 5-20 microM), and tert- butylhydroquinone (tBHQ; 80-200 microM), inhibitors of endoplasmic reticulum Ca(2+)-ATPases, as well as the Ca2+ ionophore ionomycin (5-40 nM), elicit [Ca2+]i oscillations in human T cells. The oscillation frequency is approximately 5 mHz (for ATPase inhibitors) to approximately 10 mHz (for ionomycin) at 22-24 degrees C. The [Ca2+]i oscillations resemble those evoked by TCR ligation in terms of their shape, amplitude, and an absolute dependence on Ca2+ influx. Ca(2+)- ATPase inhibitors and ionomycin induce oscillations only within a narrow range of drug concentrations that are expected to cause partial depletion of intracellular stores. Ca(2+)-induced Ca2+ release does not appear to be significantly involved, as rapid removal of extracellular Ca2+ elicits the same rate of [Ca2+]i decline during the rising and falling phases of the oscillation cycle. Both transmembrane Ca2+ influx and the content of ionomycin-releasable Ca2+ pools fluctuate in oscillating cells. From these data, we propose a model in which [Ca2+]i oscillations in T cells result from the interaction between intracellular Ca2+ stores and depletion-activated Ca2+ channels in the plasma membrane.  相似文献   

16.
Postovulatory aging of oocytes significantly affects embryonic development. Also, altered Ca2+ oscillation patterns can be observed in fertilized, aged mouse oocytes. Because Ca2+ oscillations depend on Ca2+ release and reuptake in the endoplasmic reticulum, and the latter relies on ATP availability, we simultaneously measured changes in intracellular ATP concentration ([ATP]i) and Ca2+ oscillations in fresh and aged mouse oocytes. We continuously assessed changes in [ATP]i from intracellular free Mg2+ concentration measured by fluorescent dye Magnesium Green (MgG) while intracellular Ca2+ concentration ([Ca2+]i) was monitored by Fura-PE3. At fertilization, MgG fluorescence was transiently increased concomitant with the first transient elevation in [Ca2+]i, indicating a relative decrease in [ATP]i. In fresh oocytes, it was quickly followed by a significant decrease below baseline, indicating a relative increase in [ATP]i. In contrast, in aged oocytes, such a decrease in MgG fluorescence was not observed. In a separate experiment, ATP content in fresh and aged oocytes was determined in vitro by the luciferin-luciferase assay. Intracellular ATP contents measured in vitro were comparable in unfertilized fresh and aged oocytes. Intracellular ATP content at 5 h after fertilization was increased in both oocytes, where fresh oocytes showed a significantly higher intracellular value than aged oocytes. These findings suggest that aged mouse oocytes fail to readjust the level of intracellular ATP at fertilization. Relative deficiencies of ATP at fertilization might lead to an altered Ca2+ oscillation pattern and poor developmental potency, which is commonly noted in aged oocytes.  相似文献   

17.
M Iino  H Kasai    T Yamazawa 《The EMBO journal》1994,13(21):5026-5031
The intermittent rise in intracellular Ca2+ concentration ([Ca2+]i oscillation) has been observed in many types of isolated cells, yet it has not been demonstrated whether it plays an essential role during nerve stimulation in situ. We used confocal microscopy to study Ca2+ transients in individual smooth muscle cells in situ within the wall of small arteries stimulated with perivascular sympathetic nerves or noradrenaline. We show here that the sympathetic adrenergic regulation of arterial smooth muscle cells involves the oscillation of [Ca2+]i that propagates within the cell in the form of a wave. Ca2+ release from intracellular stores plays a key role in the oscillation because it is blocked after the store depletion by ryanodine treatment. Ca2+ influx through the plasma membrane sustains the oscillation by replenishing the Ca2+ stores. These results demonstrate the involvement of [Ca2+]i oscillations in the neural regulation of effector cells within the integrated system.  相似文献   

18.
We demonstrated synchronous oscillation of intracellular Ca2+ in cultured-mouse mid-brain neurons. This synchronous oscillation was thought to result from spontaneous and synchronous neural bursts in a synaptic neural network. We also examined the role of endogenous dopamine in neural networks showing synchronous oscillation. Immunocytochemical study revealed a few tyrosine hydroxylase (TH)-positive dopaminergic neurons, and that cultured neurons expressed synaptophysin and synapsin I. Western blot analyses comfirmed synaptophysin, TH, and 2 types of dopamine receptor (DR), D1R and D2R expression. The synchronous oscillation in midbrain neurons was abolished by the application of R(-)-2-amino-5-phosphonopentanoic acid (AP-5) as an N-methyl-D-aspartate receptor (NMDAR) antagonist. This result suggests that the synchronous oscillation in midbrain neurons requires glutamatergic transmissions, as was the case in previously reported cortical neurons. SCH-12679, a D1R antagonist, inhibited synchronous oscillation in midbrain neurons, while raclopride, a D2R antagonist, induced a transient increase of intracellular Ca2+ and inhibited synchronous oscillation. We consider that endogenous dopamine maintains synchronous oscillation of intracellular Ca2+ through D1R and D2R, and that these DRs regulate intracellular Ca2+in distinctly different ways. Synchronous oscillation of midbrain neurons would be a useful tool for in vitro researches into various neural disorders directly or indirectly caused by dopaminergic neurons.  相似文献   

19.
Agonist-specific cytosolic Ca2+ oscillation patterns can be observed in individual cells and these have been explained by the co-existence of separate oscillatory mechanisms. In pancreatic acinar cells activation of muscarinic receptors typically evokes sinusoidal oscillations whereas stimulation of cholecystokinin (CCK) receptors evokes transient oscillations consisting of Ca2+ waves with long intervals between them. We have monitored changes in the cytosolic Ca2+ concentration ([Ca2+]i) by measuring Ca2(+)-activated Cl- currents in single internally perfused mouse pancreatic acinar cells. With minimal intracellular Ca2+ buffering we found that low concentrations of both ACh (50 nM) and CCK (10 pM) evoked repetitive short-lasting Ca2+ spikes of the same duration and frequency, but the probability of a spike being followed by a longer and larger Ca2+ wave was low for ACh and high for CCK. The probability that the receptor-evoked shortlasting Ca2+ spikes would initiate more substantial Ca2+ waves was dramatically increased by intracellular perfusion with solutions containing high concentrations of the mobile low affinity Ca2+ buffers citrate (10-40 mM) or ATP (10-20 mM). The different Ca2+ oscillation patterns normally induced by ACh and CCK would therefore appear not to be caused by separate mechanisms. We propose that specific receptor-controlled modulation of Ca2+ signal spreading, either by regulation of Ca2+ uptake into organelles and/or cellular Ca2+ extrusion, or by changing the sensitivity of the Ca2(+)-induced Ca2+ release mechanism, can be mimicked experimentally by different degrees of cytosolic Ca2+ buffering and can account for the various cytosolic Ca2+ spike patterns.  相似文献   

20.
Circadian rhythms in clock gene expressions in the suprachiasmatic nucleus (SCN) of CS mice and C57BL/6J mice were measured under a daily restricted feeding (RF) schedule in continuous darkness (DD), and entrainment of the SCN circadian pacemaker to RF was examined. After 2-3 wk under a light-dark cycle with free access to food, animals were released into DD and fed for 3 h at a fixed time of day for 3-4 wk. Subsequently, they returned to having free access to food for 2-3 wk. In CS mice, wheel-running rhythms entrained to RF with a stable phase relationship between the activity onset and feeding time, and the rhythms started to free run from the feeding time after the termination of RF. mPer1, mPer2, and mBMAL1 mRNA rhythms in the SCN showed a fixed phase relationship with feeding time, indicating that the circadian pacemaker in the SCN entrained to RF. On the other hand, in C57BL/6J mice, wheel-running rhythms free ran under RF, and clock gene expression rhythms in the SCN showed a stable phase relation not to feeding time but to the behavioral rhythms, indicating that the circadian pacemaker in the SCN did not entrain. These results indicate that the SCN circadian pacemaker of CS mice is entrainable to RF under DD and suggest that CS mice have a circadian clock system that can be reset by a signal associated with feeding time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号