首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Teichoic acid-glycopeptide complexes were isolated from lysozyme digests of the cell walls of Bacillus coagulans AHU 1631, AHU 1634, and AHU 1638, and the structure of the teichoic acid moieties and their linkage regions was studied. On treatment with hydrogen fluoride, each of the complexes gave a hexosamine-containing disaccharide, which was identified to be glucosyl(beta 1----4)N-acetylglucosamine, in addition to dephosphorylated repeating units of the teichoic acids, namely, galactosyl(alpha 1----2)glycerol and either galactosyl(alpha 1----2)[glucosyl(alpha 1----1/3)]glycerol (AHU 1638) or galactosyl(alpha 1----2)[glucosyl(beta 1----1/3)]glycerol (AHU 1631 and AHU 1634). From the results of Smith degradation, methylation analysis, and partial acid hydrolysis, the teichoic acids from these strains seem to have the same backbone chains composed of galactosyl(alpha 1----2)glycerol phosphate units joined by phosphodiester bonds at C-6 of the galactose residues. The presence of the disaccharide, glucosyl(beta 1----4)N-acetylglucosamine, in the linkage regions between teichoic acids and peptidoglycan was confirmed by the isolation of a disaccharide-linked glycopeptide fragment from each complex after treatment with mild alkali and of a teichoic acid-linked saccharide from each cell wall preparation after treatment with mild acid. Thus, it is concluded that despite structural differences in the glycosidic branches, the teichoic acids in the cell walls of the three strains are linked to peptidoglycan through a common linkage saccharide, glucosyl (beta 1----4) N-acetylglucosamine.  相似文献   

2.
S Kaya  K Yokoyama  Y Araki    E Ito 《Journal of bacteriology》1984,158(3):990-996
The structure of teichoic acid-glycopeptide complexes isolated from lysozyme digests of cell walls of Bacillus subtilis (four strains) and Bacillus licheniformis (one strain) was studied to obtain information on the structural relationship between glycerol teichoic acids and their linkage saccharides. Each preparation of the complexes contained equimolar amounts of muramic acid 6-phosphate and mannosamine in addition to glycopeptide components and glycerol teichoic acid components characteristic of the strain. Upon treatment with 47% hydrogen fluoride, these preparations gave, in common, a hexosamine-containing disaccharide, which was identified as N- acetylmannosaminyl (1----4) N-acetylglucosamine, along with large amounts of glycosylglycerols presumed to be the dephosphorylated repeating units of teichoic acid chains. The glycosylglycerol obtained from each bacterial strain was identified as follows: B. subtilis AHU 1392, glucosyl alpha (1----2)glycerol; B. subtilis AHU 1235, glucosyl beta(1----2) glycerol; B. subtilis AHU 1035 and AHU 1037, glucosyl alpha (1----6)galactosyl alpha (1----1 or 3)glycerol; B. licheniformis AHU 1371, galactosyl alpha (1----2)glycerol. By means of Smith degradation, the galactose residues in the teichoic acid-glycopeptide complexes from B. subtilis AHU 1035 and AHU 1037 and B. licheniformis AHU 1371 were shown to be involved in the backbone chains of the teichoic acid moieties. Thus, the glycerol teichoic acids in the cell walls of five bacterial strains seem to be joined to peptidoglycan through a common linkage disaccharide, N- acetylmannosaminyl (1----4)N-acetylglucosamine, irrespective of the structural diversity in the glycosidic branches and backbone chains.  相似文献   

3.
Structural studies were carried out on the teichoic acids in cell walls of Listeria monocytogenes serotypes 3a, 4b, 4f, 6, and 7. The structure of the dephosphorylated repeating units, obtained by treatment with 46% hydrogen fluoride or alkaline hydrolysis, was examined by methylation analysis, acetolysis, and 1H-NMR spectroscopy. The results of Smith degradation of the teichoic acids and 13C-NMR spectroscopy led to the following most likely structures of the repeating units of the teichoic acids:----1-[N-acetylglucosaminyl(alpha 1----4)]ribitol-5-phosphate----for serotype 3a,----4-[galactosyl(alpha 1----6)][glucosyl(beta 1----3)]N -acetylglucosaminyl(beta 1----2)ribitol-5-phosphate----for serotype 4b,----4-[galactosyl(alpha 1----6)][N -acetylglucosaminyl(alpha 1----3)]N-acetylglucosaminyl(beta 1----2)ribitol -5-phosphate----for serotype 4f,----4-N-acetylglucosaminyl(beta 1----4)ribitol -5-phosphate----for serotype 6, and----1-ribitol-5-phosphate----for serotype 7. About 40% of the repeating units of the teichoic acid from serotype 4f were not substituted at C-3 of beta-N-acetylglucosaminyl residues.  相似文献   

4.
The structure of the linkage unit between ribitol teichoic acid and peptidoglycan in the cell walls of Listeria monocytogenes EGD was studied. A teichoic-acid--glycopeptide preparation isolated from lysozyme digests of the cell walls of this strain contained mannosamine, glycerol, glucose and muramic acid 6-phosphate in an approximate molar ratio of 1:1:2:1, together with large amounts of glucosamine and other components of teichoic acid and glycopeptides. A teichoic-acid-linked sugar preparation, obtained by heating the cell walls at pH 2.5, also contained glucosamine, mannosamine, glycerol and glucose in an approximate molar ratio of 25:1:1:2. Part of the glucosamine residues were shown to be involved in the linkage unit. Thus, on mild alkaline hydrolysis, the teichoic-acid-linked sugar preparation gave a disaccharide characterized as N-acetylmannosaminyl(beta 1----4)-N-acetylglucosamine [ManNAc(beta 1----4)GlcNAc] in addition to the ribitol teichoic acid moiety, whereas the teichoic-acid - glycopeptide was separated into disaccharide-linked glycopeptide and the ribitol teichoic acid moiety by the same procedure. Furthermore, Smith degradation of the cell walls gave a characteristic fragment, EtO2-P-Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-ManNAc(beta 1----4)GlcNAc (where EtO2 = 1,2-ethylenediol and Gro = glycerol). The results lead to the conclusion that in the cell walls of this organism, the ribitol teichoic acid chain is linked to peptidoglycan through a novel linkage unit, Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-(3/4)ManNAc-(beta 1----4)GlcNAc.  相似文献   

5.
The HF treatment of teichoic acid-glycopeptide complexes isolated from lysozyme digests of Bacillus coagulans AHU 1366 cell walls gave a disaccharide, glucosyl beta (1 leads to 4)N-acetylglucosamine, along with dephosphorylated repeating units of the teichoic acid chain, galactosyl alpha (1 leads to 2) glycerol. Mild alkali treatment of the complexes yielded the disaccharide linked to glycopeptide, whereas direct heating of the cell walls at pH 2.5 yielded the same disaccharide linked to teichoic acid. The Smith degradation of the complexes revealed that the galactose residue is a component of backbone chain. Thus it is concluded that this disaccharide is involved in the linkage region between poly(galactosylglycerol phosphate) and peptidoglycan in cell walls. Membrane-catalyzed synthesis of this disaccharide on a lipid followed by transfer of glycerol phosphate from CDP-glycerol to the disaccharide-linked lipid in the absence or in the presence of UDP-galactose also supports this conclusion.  相似文献   

6.
N Kojima  Y Araki    E Ito 《Journal of bacteriology》1985,161(1):299-306
The structure of the linkage regions between ribitol teichoic acids and peptidoglycan in the cell walls of Staphylococcus aureus H and 209P and Bacillus subtilis W23 and AHU 1390 was studied. Teichoic acid-linked saccharide preparations obtained from the cell walls by heating at pH 2.5 contained mannosamine and glycerol in small amounts. On mild alkali treatment, each teichoic acid-linked saccharide preparation was split into a disaccharide identified as N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and the ribitol teichoic acid moiety that contained glycerol residues. The Smith degradation of reduced samples of the teichoic acid-linked saccharide preparations from S. aureus and B. subtilis gave fragments characterized as 1,2-ethylenediol phosphate-(glycerolphosphate)3-N-acetylmannosaminyl beta(1----4)N- -acetylxylosaminitol and 1,2-ethylenediolphosphate-(glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylxylosaminitol, respectively. The binding of the disaccharide unit to peptidoglycan was confirmed by the analysis of linkage-unit-bound glycopeptides obtained from NaIO4 oxidation of teichoic acid-glycopeptide complexes. Mild alkali treatment of the linkage-unit-bound glycopeptides yielded disaccharide-linked glycopeptides, which gave the disaccharide and phosphorylated glycopeptides on mild acid treatment. Thus, it is concluded that the ribitol teichoic acid chains in the cell walls of the strains of S. aureus and B. subtilis are linked to peptidoglycan through linkage units, (glycerol phosphate)3-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and (glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine, respectively.  相似文献   

7.
The teichoic acid from the cell wall of Actinomadura cremea INA 292 has an unusual structure, being a poly(galactosylglycerol phosphate) chain with glycerol phosphate groups. Monomeric units of 1-O, beta-D-galactopyranosylglycerol monophosphate are joined in the polymer by phosphodiester links involving the glycerol C3 and the galactose C6 atoms. Approximately every second galactosyl substituent has a glycerol phosphate residue at its C3 atom. The teichoic acid structure was established by chemical analysis and 13C-NMR spectroscopy. There also is a peptidoglycan belonging to the A1 gamma type: as well as meso-2,6-diaminopimelic acid it contains small amounts of the LL form and glycine.  相似文献   

8.
The Actinoplanes philippinensis cell wall has several anionic carbohydrate-containing polymers. The major polymer is of poly(glycosylglycerol phosphate) type, its monomeric unit being O-alpha-D-mannopyranosyl-(1----4)-beta-D- galactopyranosyl-(1----1)-glycerol monophosphate. The phosphodiester linkages connect the C3 of glycerol units and the C6 of galactosyl ones, and the mannosyl residues form side branches of the teichoic acid's main chain. Chains without mannosyl residues were found in addition to the major teichoic acid. The structure of the polymers was established by chemical analysis, and 13C and 1H NMR spectroscopy. It is for the first time that a teichoic acid with mannosyl residues was found in bacterial cell walls. The phosphorylated mannan contains, in addition to mannose, 2-O-methylmannose. The main chain has alpha-1,2, alpha-1,3 and alpha-1,6 types of substitution, which was established by 13C NMR spectroscopy.  相似文献   

9.
Pneumococcal lipoteichoic acid was extracted and purified by a novel, quick and effective procedure. Structural analysis included methylation, periodate oxidation, Smith degradation, oxidation with CrO3, and fast-atom-bombardment mass spectrometry. Hydrolysis with 48% (by mass) HF and subsequent phase partition yielded the lipid anchor (I), the dephosphorylated repeating unit of the chain (II) and a cleavage product of the latter (III). The proposed structures are: (I) Glc(beta 1----3)AATGal(beta 1----3)Glc(alpha 1----3)acyl2Gro, (II) Glc(beta 1----3)AATGal(alpha 1----4)GalNAc(alpha 1----3)GalNAc(beta 1----1)ribitol and (III) Glc(beta 1----3)AATGal(alpha 1----4)GalNAc(alpha 1----3)GalNAc, where AATGal is 2-acetamido-4-amino-2,4,6-trideoxygalactose, and all sugars are in the pyranose form and belong to the D-series. Alkaline phosphodiester cleavage of lipoteichoic acid, followed by treatment with phosphomonoesterase, resulted in the formation of II and IV, with IV as the prevailing species: [sequence: see text] The linkage between the repeating units was established as phosphodiester bond between ribitol 5-phosphate and position 6 of the glucosyl residue of adjacent units. The chain was shown to be linked to the lipid anchor by a phosphodiester between its ribitol 5-phosphate terminus and position 6 of the non-reducing glucosyl terminus of I. The lipoteichoic acid is polydisperse: the chain length may vary between 2 and 8 repeating units and variations were also observed for the fatty acid composition of the diacylglycerol moiety. Preliminary results suggest that repeating units II and IV are enriched in separate molecular species. All species were associated with Forssman antigenicity, albeit to a various extent when related to the non-phosphocholine phosphorus. Owing to its unique structure, the described macroamphiphile may be classified as atypical lipoteichoic acid.  相似文献   

10.
Structural studies were carried out on two kinds of teichuronic acid-glycopeptide complexes (designated as TU-GP-I and TU-GP-II) isolated from lysozyme digest of N-acetylated cell walls of Bacillus megaterium AHU 1375 by ion-exchange chromatography and gel chromatography. TU-GP-I, accounting for about 25% of the cell walls, contained N-acetylmannosaminuronic acid, N-acetylglucosamine, glucose, galactose, glycerol, and phosphorus in an approximate molar ratio of 1:1:2:1:0.5:0.5, together with small amounts of glycopeptide components. TU-GP-II, accounting for about 9% of the cell walls, contained glucuronic acid, glucose, and fucose in a molar ratio of about 2:1.5:1, together with small amounts of glycopeptide components. The results of analyses involving Smith degradation, chromium oxidation, methylation, acetolysis, and H-NMR measurement led to the conclusion that the polysaccharide chain of TU-GP-I comprised repeating units,----6) Glc(alpha 1----3)-ManNAcUA(beta 1----4)[Gal(alpha 1----3)][Glc(beta 1----6)]GlcNAc(beta 1----. About half of the repeating units were substituted by glycerophosphoryl residues at C-6 of the beta-glucosyl residues linked to the N-acetylglucosamine residues. By means of a similar procedure, the polysaccharide chain of TU-GP-II was shown to comprise repeating units,----4)GlcUA(alpha 1----3)GlcUA(alpha 1----3)Glc(alpha 1----3)Fuc(alpha 1----, of which about half were substituted by alpha-glucosyl residues at C-3 of the 4-substituted glucuronosyl residues.  相似文献   

11.
Specific lectin-carbohydrate interactions between certain oral streptococci and actinomyces contribute to the microbial colonization of teeth. The receptor molecules of Streptococcus oralis, 34, ATCC 10557, and Streptococcus mitis J22 for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii are antigenically distinct polysaccharides, each formed by a different phosphodiester-linked oligosaccharide repeating unit. These streptococci all coaggregated strongly with both A. viscosus and A. naesludii strains, whereas S. oralis C104 interacted preferentially with certain strains of the latter species. Receptor polysaccharide was isolated from S. oralis C104 cells and was shown to contain galactose, N-acetylgalactosamine, ribitol, and phosphate with molar ratios of 4:1:1:1. The 1H NMR spectrum of the polysaccharide shows that it contains a repeating structure. The individual sugars in the repeating unit were identified by 1H coupling constants observed in E-COSY and DQF-COSY spectra. NMR methods included complete resonance assignments (1H and 13C) by various homonuclear and heteronuclear correlation experiments that utilize scalar couplings. Sequence and linkage assignments were obtained from the heteronuclear multiple-bond correlation (HMBC) spectrum. This analysis shows that the receptor polysaccharide of S. oralis C104 is a ribitol teichoic acid polymer composed of a linear hexasaccharide repeating unit containing two residues each of galactopyranose and galactofuranose and a residue each of GalNAc and ribitol joined end to end by phosphodiester linkages with the following structure. [----6)Galf(beta 1----3)Galp(beta 1----6)Galf(beta 1----6)GalpNAc(beta 1----3) Galp(alpha 1----1)ribitol(5----PO4-]n  相似文献   

12.
A teichoic acid of Nocardioides albus VKM Ac-805T cell walls, a typical species of the genus Nocardioides, contains a poly(glycosylglycerol phosphate). The repeating unit of the polymer has the structure: [figure]. These units are in phosphodiester linkage at C-3 of glycerol and C-3 of beta-D-galactopyranose. beta-D-Galactopyranosyl residues are substituted at C-4 by beta-D-glucopyranose carrying a 4,6-pyruvate ketal group in S-configuration. The presence of pyruvic acid in the majority of repeating units increases the anionic properties of the polymer in comparison with most other common teichoic acids. This is the first report of the occurrence of a beta-D-galactofuranosyl residue in teichoic acids; it probably acts as a terminator of an extending chain of the polymer. The ratio of beta-D-galactopyranosyl to beta-D-galactofuranosyl units is 7:1. The polymer structure was determined by NMR spectroscopy. This type of teichoic acid structure has not been reported previously.  相似文献   

13.
D-[alpha-14C]]glucosyl phosphorylpolyprenol ([ 14C]Glc-P-prenol) was formed from UDP-D-[14C]glucose in each of the membrane systems obtained from Bacillus coagulans AHU 1631 and AHU 1634 and two Bacillus megaterium strains. Membranes of these B. coagulans strains, which possess beta-D-glucosyl branches on the repeating units in their major cell wall teichoic acids, were shown to catalyze the transfer of the glucose residue from [14C]Glc-P-prenol to endogenous polymer. On the other hand, membranes of B. coagulans AHU 1366, which has no glucose substituents in the cell wall teichoic acid, exhibited neither [14C]Glc-P-prenol synthetase activity nor the activity of transferring glucose from [14C]Glc-P-prenol to endogenous acceptor. The enzyme which catalyzes the polymer glycosylation in the former two B. coagulans strains was most active at pH 5.5 and in the presence of the Mg2+ ion. The apparent Km for [14C]Glc-P-prenol was 0.6 microM. Hydrogen fluoride hydrolysis of the [14C]glucose-linked polymer product yielded a major fragment identical to D-galactosyl-alpha(1----2)(D-glucosyl-beta(1----1/3)) glycerol, the dephosphorylated repeating unit in the major cell wall teichoic acids of these B. coagulans strains. This result, together with the behavior of the radioactive polymer in chromatography on Sepharose CL-6B, DEAE-Sephacel, and Octyl-Sepharose CL-4B, led to the conclusion that [14C]Glc-P-prenol serves as an intermediate in the formation of beta-D-glucosyl branches on the polymer chains of cell wall teichoic acids in B. coagulans.  相似文献   

14.
The primary structure of teichuronic acid in Bacillus subtilis AHU 1031   总被引:3,自引:0,他引:3  
Structural studies were carried out on the acidic polysaccharide fraction obtained from lysozyme digest of the cell walls of Bacillus subtilis AHU 1031. The polysaccharide fraction contained N- acetylmannosaminuronic acid ( ManNAcA ), N-acetylglucosamine (GlcNAc), glucose, glycerol and phosphorus in a molar ratio of 2:2:4:1:1, together with glycopeptide components. The results of analyses involving Smith degradation, chromium trioxide oxidation, methylation and proton magnetic resonance spectroscopy led to the conclusion that the backbone chain of the polysaccharide has the repeating unit----6)Glc(alpha 1----3/4) ManNAcA (beta 1----4)GlcNAc(beta 1----. About 50% of the N-acetylglucosamine residues in the backbone chain seem to be substituted at C-3 by the glycosidic branches, glycerol phospho-6-glucose, while the other half seem to be substituted by glucose.  相似文献   

15.
1. Walls of Bacillus stearothermophilus B65 contain a glycerol teichoic acid in which repeating structures consisting of 1-O-alpha-D-glucopyranosylglycerol phosphate are held together by phosphodiester linkage between the glycerol and glucose moieties of adjacent units. 2. The walls are not agglutinated on incubation with concanavalin A, nor does the isolated teichoic acid form a precipitate with this lectin. 3. No evidence was obtained of the presence of the glucosylated (1 leads to 2)-poly(glycerol phosphate) teichoic acid which has previously been reported to occur in walls of this bacterium.  相似文献   

16.
The cell walls of Actinomadura viridis contain poly(glycosylglycerol phosphate) chains of complex structure. On the basis of NMR spectroscopy of the polymer and glycosides thereof the following structural units were found: beta-D-Galp3Me-(1-->4)[beta-D-Glcp-(1-->6)]-beta-D-Galp-(1-->1)-++ +snGro (G1); beta-D-Galp-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2); beta-D-Galp3Me-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2a); beta-D-Galp-(1-->1)-snGro (G3); beta-D-Galp-(1-->1)[beta-D-Galp-(1-->2)]-snGro (G4); beta-D-Glcp-(1-->2)-snGro (G5). Glycosides G1, G2 and G3 were the predominant components of the teichoic acid: they formed the polymer chain via phosphodiester bonds involving C-3 of the glycerol residue and C-3 of the galactosyl residue which in turn glycosylates C-1 of the glycerol residue. Whether the different glycosides make up the one chain or whether there are several poly(glycosylglycerol phosphate) chains in the cell wall remains to be determined. It was suggested that the minor component G5 is located at the nonterminal end of the chains. Compound G4 which contains disubstituted glycerol residues (unusual for the teichoic acid) was also found as a minor component; this may be the glycoside of a new type of teichoic acid, or a glycoside on the terminal end of the above mentioned chains. In addition, small amounts of 1,3-poly(glycerol phosphate) chains were found in the cell wall.  相似文献   

17.
A new teichoic acid was identified in the cell walls of Streptomyces griseoviridis VKM Ac-622T, Streptomyces sp. VKM Ac-2091, and Actinoplanes campanulata VKM Ac-1319T. The polymer is poly(glycosylglycerol phosphate). The repeating units of the polymer, alpha-galactopyranosyl-(1-->3)-2-acetamido-2-deoxy-beta-galactopyran+ ++ osyl-(1-->1)-glycerols, are in phosphodiester linkage at C-3 of glycerol and C-6 of galactose. The structures of cell wall teichoic acids in the strains Streptomyces chryseus VKM Ac-200T and "Streptomyces subflavus" VKM Ac-484 similar in morphology and growth characteristics are also identical: 1,5-poly(ribitol phosphate) substituted at C-4(2) by 2-acetamido-2-deoxy-beta-glucopyranosyl residues and 1,3-poly(glycerol phosphate). The taxonomic aspects of these results are discussed.  相似文献   

18.
从猴头菌子实体中分离得到一种新型的水溶性杂多糖HEPF2,分子量大小为1.66′104Da,该多糖由岩藻糖、半乳糖和葡萄糖以1.00:3.69:5.42比例构成,同时也含有微量的3-O-甲基鼠李糖。进一步利用傅立叶变换红外光谱法、糖组成分析、甲基化分析、部分酸水解法和核磁共振法等方法进行结构鉴定,检测结果表明,该杂多糖中包含1→4、1→6结合的葡萄糖和1→6结合的半乳糖残基,连接于主链的侧链残基,包括岩藻糖残基、少数的端基葡萄糖和半乳糖残基。核磁共振法检测结果还表明,1→4结合葡萄糖为β构型,(1→6)结合半乳糖、(1→2,6)结合半乳糖和端基葡萄糖均为α构型。  相似文献   

19.
The structure of a neuraminidase-labile monosialoganglioside which is formed in vivo from asialoganglioside (galactosyl (beta, 1 in equilibrium 3) N-acetylgalactosaminyl (beta, 1 in equilibrium 4) galactosyl (beta, 1 in equilibrium 4) glucosyl (1 in equilibrium 1) ceramide) and cytidine-5'-monophospho-N-acetylneuraminic acid in the presence of young rat brain sialytransferase has been established. This monosialoganglioside contains a neuraminidase-labile N-acetylneuraminyl group which is linked at position C-3 of the terminal galactosyl unit. This result was obtained by ultramicro scale permethylation of radioactive neuraminidase-labile monosialoganglioside biosynthesized from asialoganglioside labeled with tritium in the terminal galactose.  相似文献   

20.
The cell walls of Actinomadura carminata, producing the antibiotic carminomycin, contain a poly(glycerol phosphate) teichoic acid. The polymer belongs to 1,3-type and consists of about 8 glycerol phosphate units, two of them have 2-acetamido-2-deoxy-alpha-D-galactopyranosyl substituent and one--3-O-methyl-beta-D-galactopyranosyl-(1----3)-2- acetamido-2-deoxy-alpha-D-galactopyranosyl residue at C2 of glycerol. The structure of the polymer was established by chemical analysis and 13C-NMR spectroscopy. The teichoic acid accounted for about 10% of the cell wall dry weight. 3-O-methylgalactose in the structure of the teichoic acid was found for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号