共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteolysis mediated by the ubiquitin-proteasome system has been implicated in the regulation of programmed cell death. Here we investigated the differential effects of proteasomal inhibitors on the viability of proliferating and quiescent primary endothelial cells in vitro and in vivo. Subconfluent, proliferating cells underwent carbobenzoxy-L-isoleucyl-gamma-t-butyl-L-glutamyl-L-alanyl-L-leucinal (PSI) -induced apoptosis at low concentrations (EC(50)=24 nM), whereas at least 340-fold higher concentrations of PSI were necessary to obtain the same effect in confluent, contact-inhibited cells. PSI-mediated cell death could be blocked by a caspase-3 inhibitor (Ac-DEVD-H), but not by a caspase-1 inhibitor (Ac-YVAD-H), suggesting that a caspase-3-like enzyme is activated during PSI-induced apoptosis. When applied to the embryonic chick chorioallantoic membrane, a rapidly expanding tissue, PSI induced massive apoptosis also in vivo. PSI treatment of the CAM led to the formation of areas devoid of blood flow due to the induction of apoptosis in endothelial and other cells and to the collapse of capillaries and first order vessels. Our results demonstrate that proteasomal inhibitors such as PSI may prove effective as novel anti-angiogenic and anti-neoplastic substances. 相似文献
2.
Bijnsdorp IV Kruyt FA Fukushima M Peters GJ 《Nucleosides, nucleotides & nucleic acids》2008,27(6):699-703
Trifluorothymidine (TFT), a potent anticancer agent, inhibits thymidylate synthase (TS) and is incorporated into the DNA, both events resulting in cell death. Cell death induction related to DNA damage often involves activation of p53. We determined the role of p53 in TFT cytotoxicity and cell death induction, using, respectively, the sulforhodamine B-assay and FACS analysis, in a panel of cell lines with either wild type, inactive, or mutated p53. Neither TFT cytotoxicity nor cell death induction changed with TFT exposure in cell lines with wt, inactive or mutated p53. Conclusion: sensitivity to TFT is not dependent on the expression of wt p53. 相似文献
3.
Association of p130CAS with phosphatidylinositol-3-OH kinase mediates adenovirus cell entry 总被引:6,自引:0,他引:6
Li E Stupack DG Brown SL Klemke R Schlaepfer DD Nemerow GR 《The Journal of biological chemistry》2000,275(19):14729-14735
The Crk-associated substrate, p130(CAS), has been implicated in the regulation of the actin cytoskeleton following ligation of cell integrins with the extracellular matrix. Integrin-mediated cell adhesion involves p130(CAS) association with focal adhesion kinase (p125(FAK)). Internalization/cell entry of type 2 and type 5 adenoviruses (Ad) is also mediated by alpha(v) integrins. However, expression of dominant negative forms of p125(FAK) does not alter virus entry, and Ad entry occurs normally in p125(FAK)-deficient fibroblasts. We now provide evidence that Ad internalization, a process which is mediated by alpha(v) integrins, also requires p130(CAS) and phosphatidylinositol-3-OH kinase (PI 3-kinase). Ad induces p130(CAS) phosphorylation and inhibition of p130(CAS) phosphorylation by tyrphostin and genistein, or expression of the substrate domain deleted p130(CAS) blocks Ad internalization. p130(CAS) was also found to associate with the p85 subunit of PI 3-kinase through its proline-rich domain during virus internalization and expression of p130(CAS) containing a deleted proline-rich domain (PRD) inhibited adenovirus cell entry. We showed further that the RPLPSPP motif in the proline-rich region of p130(CAS) interacts with the SH3 domain of p85/PI 3-kinase. These studies reveal the molecular basis by which p130(CAS) coordinates the signaling pathways involved in integrin-mediated Ad endocytosis. 相似文献
4.
Activation of the programmed cell death pathway by inhibition of proteasome function in plants 总被引:11,自引:0,他引:11
Kim M Ahn JW Jin UH Choi D Paek KH Pai HS 《The Journal of biological chemistry》2003,278(21):19406-19415
5.
Programmed cell death and the proteasome 总被引:2,自引:0,他引:2
A characteristic feature of apoptotic cell death is the activation of a cascade of cytoplasmic proteases that results in the cleavage of a limited number of target proteins. A central role in these proteolytic events has been assigned to members of the capase family. However, the use of low molecular weight proteasomal inhibitors has also demonstrated that protein degradation or processing by the ubiquitin-proteasome system of the cell has a decisive impact on cell survival and death as well, depending on the cell type and/or the proliferative status of the cells studied. Treatment of proliferating cells with proteasome inhibitors leads to cell death, potentially involving an internal signalling conflict between accumulating levels of the cdk inhibitor p27Kip1 and c-myc. In contrast, in terminally differentiated cells the same compounds have the opposite effect of blocking apoptosis, possibly by preventing proteasome-mediated degradation of a capase inhibitor. In this review the role of proteasome-mediated proteolysis in the dying cell is discussed and apparently conflicting results are integrated into a working hypothesis which functionally locates the proteasome upstream of capase3-like enzymes. 相似文献
6.
The significance of impairment of proteasome activity in PC12 cells was examined in connection with nitrative/nitrosative stress and apoptotic cell death. Treatment of differentiated PC12 cells with MG132, a proteasome inhibitor, elicited a dose- and time-dependent increase in neuronal nitric oxide synthase (nNOS) protein levels, decreased cell viability, and increased cytotoxicity. Viability and cytotoxicity were ameliorated by L-NAME (a broad NOS inhibitor). Nitric oxide/peroxynitrite formation was increased upon treatment of PC12 cells with MG132 and decreased upon treatment with the combination of MG132 and 7-NI (a specific inhibitor of nNOS). The decreases in cell viability appeared to be effected by an activation of JNK and its effect on mitochondrial Bcl-xL phosphorylation. These effects are strengthened by the activation of caspase-9 along with increased caspase-3 activity upon treatment of PC12 cells with MG132. These results suggest that impairment of proteasome activity and consequent increases in nNOS levels lead to a nitrative stress that involves the coordinated response of JNK cytosolic signaling and mitochondrion-driven apoptotic pathways. 相似文献
7.
Adrain C Creagh EM Cullen SP Martin SJ 《The Journal of biological chemistry》2004,279(35):36923-36930
The caspase family of cysteine proteases plays a conserved role in the coordinate demolition of cellular structures during programmed cell death from nematodes to man. Because cells undergoing programmed cell death in nematodes, flies, and mammals all share common features, this suggests that caspases target a common set of cellular structures in each of these organisms. However, although many substrates for mammalian caspases have been identified, few substrates for these proteases have been identified in invertebrates. To search for similarities between the repertoires of proteins targeted for proteolysis by caspases in flies and mammals, we have performed proteomics-based screens in Drosophila and human cell lines undergoing apoptosis. Here we show that several subunits of the proteasome undergo caspase-dependent proteolysis in both organisms and that this results in diminished activity of this multicatalytic protease complex. These data suggest that caspase-dependent proteolysis decreases protein turnover by the proteasome and that this is a conserved event in programmed cell death from Drosophila to mammals. 相似文献
8.
Cells exposed to sustained endoplasmic reticulum (ER) stress undergo programmed cell death and display features typical of apoptosis, such as cysteine aspartyl protease (caspase) activation, cytochrome c release, and DNA fragmentation. Here, we show that the execution of cell death induced by ER stress is mediated via the proteasome. Inhibition of the proteasome by lactacystin prevented ER stress-induced degradation of Bcl-2, release of cytochrome c, processing of effector caspase-3, and exposure of phosphatidylserine. Owing to the ability of lactacystin to inhibit cytochrome c release, we propose that the pro-apoptotic activity of the proteasome lies upstream of mitochondrial activation. Thus, the proteasome serves as a principal mediator of ER stress-induced cell death in this system. 相似文献
9.
10.
11.
Lim L Jackson-Lewis V Wong LC Shui GH Goh AX Kesavapany S Jenner AM Fivaz M Przedborski S Wenk MR 《Cell death and differentiation》2012,19(3):416-427
Parkinson's disease (PD) is a neurodegenerative disorder marked by the selective degeneration of dopaminergic neurons in the nigrostriatal pathway. Several lines of evidence indicate that mitochondrial dysfunction contributes to its etiology. Other studies have suggested that alterations in sterol homeostasis correlate with increased risk for PD. Whether these observations are functionally related is, however, unknown. In this study, we used a toxin-induced mouse model of PD and measured levels of nine sterol intermediates. We found that lanosterol is significantly (~50%) and specifically reduced in the nigrostriatal regions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, indicative of altered lanosterol metabolism during PD pathogenesis. Remarkably, exogenous addition of lanosterol rescued dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+)-induced cell death in culture. Furthermore, we observed a marked redistribution of lanosterol synthase from the endoplasmic reticulum to mitochondria in dopaminergic neurons exposed to MPP+, suggesting that lanosterol might exert its survival effect by regulating mitochondrial function. Consistent with this model, we find that lanosterol induces mild depolarization of mitochondria and promotes autophagy. Collectively, our results highlight a novel sterol-based neuroprotective mechanism with direct relevance to PD. 相似文献
12.
Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells
We previously reported that marchantin M (Mar) is an active agent to induce apoptosis in human prostate cancer (PCa), but the molecular mechanisms of action remain largely unknown. Here, we demonstrate that Mar potently inhibited chymotrypsin-like and peptidyl-glutamyl peptide-hydrolyzing activities of 20S proteasome both in in vitro and intracellular systems and significantly induced the accumulation of polyubiquitinated proteins in PCa cells. The computational modeling analysis suggested that Mar non-covalently bound to active sites of proteasome β5 and β1 subunits, resulting in a non-competitive inhibition. Proteasome inhibition by Mar subsequently resulted in endoplasmic reticulum (ER) stress, as evidenced by elevated glucose-regulated protein 78 and CHOP, increased phospho-eukaryotic translation initiation factor 2α (eIF2α), splicing of X-box-binding protein-1 and dilation of the ER. However, Mar-mediated cell death was not completely impaired by a pan inhibitor of caspases. Further studies revealed that the Mar-induced cell death was greatly associated with the activation of autophagy, as indicated by the significant induction of microtubule-associated protein-1 light chain-3 beta (LC3B) expression and conversion. Electron microscopic and green fluorescent protein-tagged LC3B analyses further demonstrated the ability of autophagy induction by Mar. Time kinetic studies revealed that Mar induced a rapid and highly sustained processing of LC3B in treated cells and simultaneously decreased the expression of p62/SQSTM1. Pharmacological blockade or knockdown of LC3B and Atg5 attenuated Mar-mediated cell death. The autophagic response triggered by Mar required the activation of RNA-dependent protein kinase-like ER kinase/eIF2α and suppression of the phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin axis via preventing activation and expression of Akt. Our results identified a novel mechanism for the cytotoxic effect of Mar, which strengthens it as a potential agent in cancer chemotherapy. 相似文献
13.
Dikshit P Chatterjee M Goswami A Mishra A Jana NR 《The Journal of biological chemistry》2006,281(39):29228-29235
Aspirin and other nonsteroidal anti-inflammatory drugs inhibit cell proliferation and induce apoptosis in various cancer cell lines, which is considered to be an important mechanism for their anti-tumor activity and prevention of carcinogenesis. However, the molecular mechanisms through which these compounds induce apoptosis are not well understood. Here we have found that aspirin treatment of the mouse Neuro 2a cells impaired the proteasome function and caused severe mitochondrial abnormalities. Treatment with aspirin lead to a dose- and time-dependent decrease in proteasome activity and an increase in the accumulation of ubiquitylated proteins in the cells, which correlated with its effect on cell death. Aspirin exposure also resulted in an increase in the half-life of pd1EGFP, a model substrate of proteasome, as well as various intracellular substrates like Bax, IkappaB-alpha, p53, and p27(kip1). Aspirin-induced proteasomal malfunction might be responsible, at least in part, for the down-regulation of NF-kappaB activity and neurite outgrowth. Finally, we have shown that aspirin treatment caused changes in the mitochondrial membrane potential, release of cytochrome c from mitochondria, and activation of caspase-9 and -3, which could be because of the proteasomal dysfunction. 相似文献
14.
Mielenz D Hapke S Pöschl E von Der Mark H von Der Mark K 《The Journal of biological chemistry》2001,276(16):13417-13426
The integrin alpha(7)beta(1) is the major laminin-binding integrin in skeletal, heart, and smooth muscle and is a receptor for laminin-1 and -2. It mediates myoblast migration on laminin-1 and -2 and thus might be involved in muscle development and repair. Previously we have shown that alpha(7)B as well as the alpha(7)A and -C splice variants induce cell motility on laminin when transfected into nonmotile HEK293 cells. In this study we have investigated the role of the cytoplasmic domain of alpha(7) in the laminin-induced signal transduction of alpha(7)beta(1) integrin regulating cell adhesion and migration. Deletion of the cytoplasmic domain did not affect assembly of the mutated alpha(7)Deltacyt/beta(1) heterodimer on the cell surface or adhesion of alpha(7)Deltacyt-transfected cells to laminin. The motility of these cells on the laminin-1/E8 fragment, however, was significantly reduced to the level of mock-transfected cells; lamellipodia formation and polarization of the cells were also impaired. Adhesion to the laminin-1/E8 fragment induced tyrosine phosphorylation of the focal adhesion kinase, paxillin, and p130(CAS) as well as the formation of a p130(CAS)-Crk complex in wild-type alpha(7)B-transfected cells. In alpha(7)BDeltacyt cells, however, the extent of p130(CAS) tyrosine formation was reduced and formation of the p130(CAS)-Crk complex was impaired, with unaltered levels of p130(CAS) and Crk protein levels. These findings indicate adhesion-dependent regulation of p130(CAS)/Crk complex formation by the cytoplasmic domain of alpha(7)B integrin after cell adhesion to laminin-1/E8 and imply alpha(7)B-controlled lamellipodia formation and cell migration through the p130(CAS)/Crk protein complex. 相似文献
15.
The mechanisms of sodium selenite-induced cell death in cervical carcinoma cells were studied during 24 h of exposure in the
HeLa Hep-2 cell line. Selenite at the employed concentrations of 5 and 50 μmol/L produced time- and dose-dependent suppression
of DNA synthesis and induced DNA damage which resulted in phosphorylation of histone H2A.X. These effects were influenced
by pretreatment of cells with the SOD/catalase mimetic MnTMPyP or glutathione-depleting buthionine sulfoximine, suggesting
the significant role of selenite-generated oxidative stress. Following the DNA damage, selenite activated p53-dependent pathway
as evidenced by the appearance of phosphorylated p53 and accumulation of p21 in the treated cells. Concomitantly, selenite
activated p38 pathway but its effect on JNK was very weak. p53- and p38-dependent signaling led to the accumulation of Bax
protein, which was preventable by specific inhibitors of p38 (SB 203580) and p53 (Pifithrin-α). Mitochondria in selenite-treated
cells changed their dynamics (shape and localization) and released AIF and Smac/Diablo, which initiated caspase-independent
apoptosis as confirmed by the caspase-3 activity assay and the low effect of caspase inhibitors z-DEVD-fmk and z-VAD-fmk on
cell death. We conclude that selenite induces caspase-independent apoptosis in cervical carcinoma cells mostly by oxidative
stress-mediated activation of p53 and p38 pathways, but other selenite-mediated effects, in particular mitochondria-specific
ones, are also involved. 相似文献
16.
Fernández Y Miller TP Denoyelle C Esteban JA Tang WH Bengston AL Soengas MS 《The Journal of biological chemistry》2006,281(2):1107-1118
The proteasome inhibitor bortezomib is emerging as a potent anti-cancer agent. Still, recent clinical trials have revealed a significant secondary toxicity of bortezomib. Consequently, there is much interest in dissecting the mechanism of action of this compound to rationally improve its therapeutic index. The cytotoxic effect of bortezomib is frequently characterized by interfering with downstream events derived from the accumulation of proteasomal targets. Here we identify the first chemical agent able to act upstream of the proteasome to prevent cell killing by bortezomib. Specifically, we show that the polyhydroxyl compound Tiron can function as a competitive inhibitor of bortezomib. This effect of Tiron was surprising, since it is a classical radical spin trap and was expected to scavenge reactive oxygen species produced as a consequence of bortezomib action. The inhibitory effect of Tiron against bortezomib was selective, since it was not shared by other antioxidants, such as vitamin E, MnTBAP, L-N-acetyl-cysteine, and FK-506. Comparative analyses with nonboronated proteasome inhibitors (i.e. MG132) revealed a specificity of Tiron for bortezomib. We exploited this novel feature of Tiron to define the "point of no return" of proteasome inhibition in melanoma cells and to block cell death in a three-dimensional model of human skin. Cells from T-cell lymphoma, breast carcinoma, and non-small cell lung cancer were also responsive to Tiron, suggesting a broad impact of this agent as a bortezomib blocker. These results may have important implications for the analysis of bortezomib in vivo and for the design of drug mixtures containing proteasome inhibitors. 相似文献
17.
The tumor suppressor functions of p19(ARF) have been attributed to its ability to induce cell cycle arrest or apoptosis by activating p53 and regulating ribosome biogenesis. Here we describe another cellular function of p19(ARF), involving a short isoform (smARF, short mitochondrial ARF) that localizes to a Proteinase K-resistant compartment of the mitochondria. smARF is a product of internal initiation of translation at Met45, which lacks the nucleolar functional domains. The human p14(ARF) mRNA likewise produces a shorter isoform. smARF is maintained at low levels via proteasome-mediated degradation, but it increases in response to viral and cellular oncogenes. Ectopic expression of smARF reduces mitochondrial membrane potential (DeltaPsim) without causing cytochrome c release or caspase activation. The dissipation of DeltaPsim does not depend on p53 or Bcl-2 family members. smARF induces massive autophagy and caspase-independent cell death that can be partially rescued by knocking down ATG5 or Beclin-1, suggesting a different prodeath function for this short isoform. 相似文献
18.
Cisplatin is a highly effective chemotherapeutic drug used in the treatment of several tumors. It is a DNA-damaging agent that induces apoptosis of rapidly proliferating cells, an important factor underlying its therapeutic efficacy. Unfortunately, cellular resistance occurs often. A large fraction of tumor cells harbor mutations in p53, contributing to defects in apoptotic pathways and drug resistance. However, cisplatin-induced apoptosis can also occur in p53 deficient cells; thus, elucidation of the molecular mechanism involved will potentially yield new strategies to eliminate tumors that have defects in the p53 pathway. Most of the studies in this field have been conducted in cultured mammalian cells, not amenable to systematic genetic manipulation. Therefore, we aimed to establish a simplified model devoid of a p53 ortholog to study cisplatin-induced programmed cell death (PCD), using the yeast Saccharomyces cerevisiae.Our results indicate cisplatin induces an active form of cell death in yeast, as this process was partially dependent on de novo protein synthesis and did not lead to loss of membrane integrity. Cisplatin also increased DNA condensation and fragmentation/degradation, but no significant mitochondrial dysfunction other than partial fragmentation. Co-incubation with the proteasome inhibitor MG132 increased resistance to cisplatin and, accordingly, yeast strains deficient in proteasome activity were more resistant to cisplatin than wild-type strains. Proteasome inhibitors can sensitize tumor cells to cisplatin, but protect others from cisplatin-induced cell death. Our results indicate inhibition of the proteasome protects budding yeast from cisplatin-induced cell death and validate yeast as a model to study the role of the proteasome in cisplatin-induced PCD. Elucidation of this mechanism will aid in the development of new strategies to increase the efficacy of chemotherapy. 相似文献
19.
Elangovan M Choi ES Jang BG Kim MS Yoo YJ 《Biochemical and biophysical research communications》2007,364(2):226-230
The subunit S5a is a key component for the recruitment of ubiquitinated substrates to the 26S proteasome. When the full-length S5a, the N-terminal half of S5a (S5aN) containing the von Willebrand A (vWA) domain, and the C-terminal half of S5a (S5aC) containing two ubiquitin(Ub)-interacting motifs (UIMs) were ectopically expressed in HEK293 cells, Ub-conjugates accumulated most prominently in S5aC-expressing cells. In addition, S5aC induced A549 lung cancer cell death but not non-cancer BEAS-2B cell death. Similar effects were observed using only S5a-UIMs. Our data therefore suggest that S5a-UIMs can be used as upstream inhibitors of the proteasome pathway. 相似文献
20.
ManTek Yeung Rose Hurren Carine Nemr Xiaoming Wang Samantha Hershenfeld Marcela Gronda Sanduni Liyanage Yan Wu Jeevan Augustine Eric A. Lee Paul A. Spagnuolo Noel Southall Catherine Chen Wei Zheng Danny V. Jeyaraju Mark D. Minden Rebecca Laposa Aaron D. Schimmer 《Apoptosis : an international journal on programmed cell death》2015,20(6):811-820