首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Gardnerella vaginalis is identified as the predominant colonist of the vaginal tract in women with bacterial vaginosis. Vaginolysin (VLY) is a protein toxin released by G. vaginalis. VLY possesses cytolytic activity and is considered as a main virulence factor of G. vaginalis. Inhibition of VLY-mediated cell lysis by antibodies may have important physiological relevance.

Results

Single-chain variable fragments of immunoglobulins (scFvs) were cloned from two hybridoma cell lines producing neutralizing antibodies against VLY and expressed as active proteins in E. coli. For each hybridoma, two variants of anti-VLY scFv consisting of either VL-VH or VH-VL linked with a 20 aa-long linker sequence (G4S)4 were constructed. Recovery of scFvs from inclusion bodies with subsequent purification by metal-chelate chromatography resulted in VLY-binding proteins that were predominantly monomeric. The antigen-binding activity of purified scFvs was verified by an indirect ELISA. The neutralizing activity was investigated by in vitro hemolytic assay and cytolytic assay using HeLa cell line. Calculated apparent Kd values and neutralizing potency of scFvs were in agreement with those of parental full-length antibodies. VH-VL and VL-VH variants of scFvs showed similar affinity and neutralizing potency. The anti-VLY scFvs derived from hybridoma clone 9B4 exhibited high VLY-neutralizing activity both on human erythrocytes and cervical epithelial HeLa cells.

Conclusions

Hybridoma-derived scFvs with VLY-binding activity were expressed in E. coli. Recombinant anti-VLY scFvs inhibited VLY-mediated cell lysis. The monovalent scFvs showed reduced affinity and neutralizing potency as compared to the respective full-length antibodies. The loss of avidity could be restored by generating scFv constructs with multivalent binding properties. Generated scFvs is the first example of recombinant single-chain antibodies with VLY-neutralizing activity produced in prokaryote expression system. G. vaginalis caused infections continue to be a world-wide problem, therefore neutralizing recombinant antibodies may provide novel therapeutic agents useful in the treatment of bacterial vaginosis and other diseases caused by G. vaginalis.  相似文献   

2.
Toll-like receptor 9 mediates CpG oligonucleotide-induced cellular invasion   总被引:1,自引:0,他引:1  
Toll-like receptor 9 (TLR9) belongs to the innate immune system and recognizes microbial and vertebrate DNA. We showed previously that treatment with the TLR9-agonistic ODN M362 (a CpG sequence containing oligonucleotide) induces matrix metalloproteinase-13-mediated invasion in TLR9-expressing human cancer cell lines. Here, we further characterized the role of the TLR9 pathway in this process. We show that CpG oligonucleotides induce invasion in macrophages from wild-type C57/B6 and MyD88 knockout mice and in human MDA-MB-231 breast cancer cells lacking MyD88 expression. This effect was significantly inhibited in macrophages from TLR9 knockout mice and in human MDA-MB-231 breast cancer cells stably expressing TLR9 small interfering RNA or dominant-negative tumor necrosis factor receptor-associated factor 6 (TRAF6). Sequence modifications to the CpG oligonucleotides that targeted the stem loop and other secondary structures were shown to influence the invasion-inducing effect in MDA-MB-231 cells. In contrast, methylation of the cytosine residues of the parent CpG oligonucleotide did not affect the TLR9-mediated invasion compared with the unmethylated parent CpG oligonucleotide. Finally, expression of TLR9 was studied in clinical breast cancer samples and normal breast epithelium with immunohistochemistry. TLR9 staining localized in epithelial cells in both cancer and normal samples. The mean TLR9 staining intensity was significantly increased in the breast cancer cells compared with normal breast epithelial cells. In conclusion, our results suggest that TLR9 expression is increased in breast cancer and CpG oligonucleotide-induced cellular invasion is mediated via TLR9 and TRAF6, independent of MyD88. Further, our findings suggest that the structure and/or stability of DNA may influence the induction of TLR9-mediated invasion in breast cancer.  相似文献   

3.
Innate immunity provides the first line of defense against invading pathogens and is essential for survival in the absence of adaptive immune responses. Innate immune recognition relies on a limited number of germ-line encoded receptors, such as Toll-like receptors (TLRs), that evolved to recognize conserved molecular patterns of microbial origin. To date, ten transmembrane proteins in the TLR family have been described. It is becoming increasingly clear that bacterial CpG DNA and synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG are potent inducers of the innate immune system including dendritic cells (DCs), macrophages, and natural killer (NK) and NKT cells. Recent studies indicate that mucosal or systemic delivery of CpG DNA can act as a potent adjuvant in a vaccine combination or act alone as an anti-microbial agent. Recently, it was shown that TLR9 is essential for the recognition of unmethylated CpG DNA since cells from TLR9-deficient mice are unresponsive to CpG stimulation. Although the effects of CpG DNA on bone marrow-derived cells are beginning to unfold, there has been little or no information regarding the mechanisms of CpG DNA function on non-immune cells or tissues. This review focuses on the recent advances in CpG-DNA/TLR9 signaling effects on the activation of innate immunity.  相似文献   

4.
Unmethylated CpG motifs present in bacterial DNA stimulate a rapid and robust innate immune response. Human cell lines and PBMC that recognize CpG DNA express membrane-bound human Toll-like receptor 9 (hTLR9). Cells that are not responsive to CpG DNA become responsive when transfected with hTLR9. Expression of hTLR9 dramatically increases uptake of CpG (but not control) DNA into endocytic vesicles. Upon cell stimulation, hTLR9 and CpG DNA are found in the same endocytic vesicles. Cells expressing hTLR9 are stimulated by CpG motifs that are active in primates but not rodents, suggesting that evolutionary divergence between TLR9 molecules underlies species-specific differences in the recognition of bacterial DNA. These findings indicate that hTLR9 plays a critical role in the CpG DNA-mediated activation of human cells.  相似文献   

5.
Regulation of osteoclastogenesis by lipopolysaccharide (LPS) is mediated via its interactions with toll-like receptor 4 (TLR4) on both osteoclast- and osteoblast-lineage cells. We have recently demonstrated that CpG oligodeoxynucleotides (CpG ODNs), known to mimic bacterial DNA, modulate osteoclastogenesis via interactions with osteoclast precursors. In the present study we characterize the interactions of CpG ODNs with osteoblasts, in comparison with LPS. We find that, similar to LPS, CpG ODNs modulate osteoclastogenesis in bone marrow cell/osteoblast co-cultures, although in a somewhat different pattern. Osteoblasts express receptors for both LPS and CpG ODN (TLR4 and TLR9, respectively). The osteoblastic TLR9 transmits signals into the cell as demonstrated by NFkappaB activation as well as by extracellular-regulated kinase (ERK) and p38 phosphorylation. Similar to LPS, CpG ODN increases in osteoblasts the expression of tumor necrosis factor (TNF)-alpha and macrophage-colony stimulating factor (M-CSF). The two TLR ligands do not affect osteoprotegerin expression in osteoblasts. CpG ODN does not significantly affect receptor activator of NFkappaB ligand (RANKL) expression, in contrast to LPS, which induces the expression of this molecule. In the co-cultures CpG ODN induces RANKL expression in osteoblasts as a result of the more efficient TNF-alpha induction. CpG ODN activity (modulation of osteoclastogenesis, gene expression, ERK and p38 phosphorylation, and nuclear translocation of NFkappaB) is specific, because the control oligodeoxynucleotide, not containing CpG, is inactive. Furthermore, these effects (unlike the LPS effects) are inhibited by chloroquine, suggesting a requirement for endosomal maturation/acidification, the classic CpG ODN mode of action. We conclude that CpG ODN, upon TLR9 ligation, induces osteoblasts osteoclastogenic activity.  相似文献   

6.
We previously reported the strong immunostimulatory effects of a CpG oligodeoxynucleotide (ODN), designated MsST, from the lacZ gene of Streptococcus (S.) thermophilus ATCC19258. Here we show that 24 h of stimulation with MsST in mouse splenocytes and peritoneal macrophages strongly induces expression of interleukin (IL)-33, a cytokine in the IL-1 superfamily. Other IL-1 superfamily members, including IL-1α, IL-1β and IL-18, are down-regulated after 24 h of stimulation of MsST. We also found that MsST-induced IL-33 mRNA expression is inhibited by the suppressive ODN A151, which can inhibit Toll-like receptor 9 (TLR9)-mediated responses. This is the first report to show that IL-33 can be induced by CpG ODNs. The strong induction of IL-33 by MsST suggests that it may be a potential therapeutic ODN for the treatment of inflammatory disease. The presence of a strong CpG ODN in S. thermophilus also suggests that the bacterium may be a good candidate as a starter culture for the development of new physiologically functional foods.  相似文献   

7.

Background

Bacterial DNA containing motifs of unmethylated CpG dinucleotides (CpG-ODN) initiate an innate immune response mediated by the pattern recognition receptor Toll-like receptor 9 (TLR9). This leads in particular to the expression of proinflammatory mediators such as tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β). TLR9 is expressed in human and murine pulmonary tissue and induction of proinflammatory mediators has been linked to the development of acute lung injury. Therefore, the hypothesis was tested whether CpG-ODN administration induces an inflammatory response in the lung via TLR9 in vivo.

Methods

Wild-type (WT) and TLR9-deficient (TLR9-D) mice received CpG-ODN intraperitoneally (1668-Thioat, 1 nmol/g BW) and were observed for up to 6 hrs. Lung tissue and plasma samples were taken and various inflammatory markers were measured.

Results

In WT mice, CpG-ODN induced a strong activation of pulmonary NFκB as well as a significant increase in pulmonary TNF-α and IL-1β mRNA/protein. In addition, cytokine serum levels were significantly elevated in WT mice. Increased pulmonary content of lung myeloperoxidase (MPO) was documented in WT mice following application of CpG-ODN. Bronchoalveolar lavage (BAL) revealed that CpG-ODN stimulation significantly increased total cell number as well as neutrophil count in WT animals. In contrast, the CpG-ODN-induced inflammatory response was abolished in TLR9-D mice.

Conclusion

This study suggests that bacterial CpG-ODN causes lung inflammation via TLR9.  相似文献   

8.
Toll-like receptors (TLR) are employed by the innate immune system to detect microbial pathogens based on conserved microbial pathogen molecules. For example, TLR9 is a receptor for CpG-containing microbial DNA, and its activation results in the production of cytokines and type I interferons from human B cells and plasmacytoid dendritic cells, respectively. Both are required for mounting an efficient antibacterial or antiviral immune response. These effects are mimicked by synthetic CpG oligodeoxynucleotides (ODN). Although several hyporesponsive TLR9 variants have been reported, their functional relevance in human primary cells has not been addressed. Here we report a novel TLR9 allele, R892W, which is hyporesponsive to CpG ODN and acts as a dominant-negative in a cellular model system. The R892W variant is characterized by increased MyD88 binding and defective co-localization with CpG ODN. Whereas primary plasmacytoid dendritic cells isolated from a heterozygous R892W carrier responded normally to CpG by interferon-α production, carrier B cells showed impaired IL-6 and IL-10 production. This suggests that heterozygous carriage of a hyporesponsive TLR9 allele is not associated with complete loss of TLR9 function but that TLR9 signals elicited in different cell types are regulated differently in human primary cells.  相似文献   

9.
Adenovirus serotype 5 (Ad5) vectors and specific neutralizing antibodies (NAbs) generate immune complexes (ICs) which are potent inducers of dendritic cell (DC) maturation. Here we show that ICs generated with rare Ad vector serotypes, such as Ad26 and Ad35, which are lead candidates in HIV vaccine development, are poor inducers of DC maturation and that their potency in inducing DC maturation strongly correlated with the number of Toll-like receptor 9 (TLR9)-agonist motifs present in the Ad vector's genome. In addition, we showed that antihexon but not antifiber antibodies are responsible for the induction of Ad IC-mediated DC maturation.  相似文献   

10.
Toll-like receptors (TLRs) expressed on cancer cells are closely associated with tumor development. In this study, we investigated the biological functions of the TLR9 ligand, CpG oligodeoxynucleotide (CpG ODN), on TLR9 expressed in the cytoplasm of hepatocellular carcinoma (HCC) cells. In vitro, human HCC cell lines were transfected with phosphorothioate-modified oligodeoxynucleotides TLR9 agonist OND M362 and its negative control ODN M362 ctrl, which inhibited the proliferation of HCC cells by inducing apoptosis without altering the cell cycle. Interestingly, ODN M362 and ODN M362 Ctrl displayed a similar proapoptotic effect on HCC, possibly related to phosphorothioate modification of the structure of CpG ODN. Although both of them resulted in the upregulation of the TLR9 receptor, their effect on HCC apoptosis was independent of TLR9. They also upregulated inflammatory cytokines, but did not activate the NF-κB signaling pathway. Finally, the activities of ODN M362 and ODN M362 Ctrl were demonstrated in nude mice inoculated with HCC cells. These findings suggest that the phosphorothioate-modified TLR9 agonist ODN M362, and its control, elicit antitumor activity in HCC cells and may serve as a novel therapeutic target for HCC therapy.  相似文献   

11.
Cobia culture is hindered by bacterial infection (Photobacterium damselae subsp. piscicida) and in order to study the effect of P. damselae subsp. piscicida challenge and CpG ODN stimulation on cobia Toll like receptor 9 (RCTLR9), we used PCR to clone RCTLR9 gene and qRT-PCR to quantify gene expression. The results indicated that RCTLR9 cDNA contains 3141 bp. It encodes 1047 amino acids containing 16 typical structures of leucine-rich repeats (LRRs) including an LRRTYP, LRRCT and a motif involved in PAMP binding was identified at position 240–253 amino acid. Broad expression of RCTLR9 was found in larval, juvenile and adult stages irrespective of the tissues. In larval stage, RCTLR9 mRNA expression decreased at 5 d and then increased at 10 dph. At juvenile stage cobia, the expression was significantly high (p < 0.05) in spleen and intestine compared to gill, kidney, liver and skin. However, at adult stage, the significant high expression was found in gill and intestine. Cobia challenged with P. damselae subsp. piscicida showed significant increase in RCTLR9 expression at 24 h post challenge in intestine, spleen and liver, while in kidney the expression was peak at 12 h and later it decreased at 24 h. The highest expression was 40 fold increase in spleen and the lowest expression was ∼3.6 fold increase in liver. Cobia stimulated with CpG oligonucleotides showed that the induction of these genes was CpG ODN type and time dependent. In spleen and liver, CpG ODNs 1668 and 2006 injected group showed high expression of RCTLR9, IL-1β, chemokine CC compared to other groups. Meanwhile, CpG ODN 2006 has induced high expression of IgM. The CpG ODNs 2395 have induced significant high expression of Mx in spleen and liver. These results demonstrates the potential of using CpG ODN to enhance cobia resistance to P. damselae subsp. piscicida infection and use as an adjuvant in vaccine development.  相似文献   

12.
13.

Background

Investigations on pulmonary macrophages (MΦ) mostly focus on alveolar MΦ (AM) as a well-defined cell population. Characteristics of MΦ in the interstitium, referred to as lung interstitial MΦ (IM), are rather ill-defined. In this study we therefore aimed to elucidate differences between AM and IM obtained from human lung tissue.

Methods

Human AM and IM were isolated from human non-tumor lung tissue from patients undergoing lung resection. Cell morphology was visualized using either light, electron or confocal microscopy. Phagocytic activity was analyzed by flow cytometry as well as confocal microscopy. Surface marker expression was measured by flow cytometry. Toll-like receptor (TLR) expression patterns as well as cytokine expression upon TLR4 or TLR9 stimulation were assessed by real time RT-PCR and cytokine protein production was measured using a fluorescent bead-based immunoassay.

Results

IM were found to be smaller and morphologically more heterogeneous than AM, whereas phagocytic activity was similar in both cell types. HLA-DR expression was markedly higher in IM compared to AM. Although analysis of TLR expression profiles revealed no differences between the two cell populations, AM and IM clearly varied in cell reaction upon activation. Both MΦ populations were markedly activated by LPS as well as DNA isolated from attenuated mycobacterial strains (M. bovis H37Ra and BCG). Whereas AM expressed higher amounts of inflammatory cytokines upon activation, IM were more efficient in producing immunoregulatory cytokines, such as IL10, IL1ra, and IL6.

Conclusion

AM appear to be more effective as a non-specific first line of defence against inhaled pathogens, whereas IM show a more pronounced regulatory function. These dissimilarities should be taken into consideration in future studies on the role of human lung MΦ in the inflammatory response.  相似文献   

14.
The monoclonal antibody OKT-9 recognizes a surface protein of human lymphocytes that consists of a disulfide bonded homodimer of m.w. 200,000 intact and 95,000 reduced. A similar protein is precipitated by transferrin-agarose, but not by agarose alone. Peptide mapping by limited proteolysis shows that the proteins precipitated by OKT-9 antibodies and transferrin-agarose are homologous. It is concluded that OKT-9 antibodies recognize the transferrin receptor. Expression of receptors for transferrin may be useful as a marker for activated or dividing cells.  相似文献   

15.
The cells of innate and adaptive immunity, although activated by different ligands, engage in cross talk to ensure a successful immune outcome. To better understand this interaction, we examined the demographic picture of individual TLR (TLRs 2-9) -driven profiles of eleven cytokines (IFN-alpha/beta, IFN-gamma, IL-12p40/IL-12p70, IL-4, 1L-13, TNF-alpha, IL-1beta, IL-2, IL-10) and four chemokines (MCP-1, MIP1beta, IL-8, and RANTES), and compared them with direct T-cell receptor triggered responses in an assay platform using human PBMCs. We find that T-cell activation by a combination of anti-CD3/anti-CD28/PHA induced a dominant IL-2, IL-13, and Type-II interferon (IFN-gamma) response without major IL-12 and little Type-I interferon (IFN-alphabeta) release. In contrast, TLR7 and TLR9 agonists induced high levels of Type-I interferons. The highest IFN-gamma levels were displayed by TLR8 and TLR7/8 agonists, which also induced the highest levels of pro-inflammatory cytokines IL-12, TNF-alpha, and IL-1beta. Amongst endosomal TLRs, TLR7 displayed a unique profile producing weak IL-12, IFN-gamma, TNF-alpha, IL-1beta, and IL-8. TLR7 and TLR9 resembled each other in their cytokine profile but differed in MIP-1beta and MCP1 chemokine profiles. Gram positive (TLR2, TLR2/6) and gram negative (TLR4) pathogen-derived TLR agonists displayed significant similarities in profile, but not in potency. TLR5 and TLR2/6 agonists paralleled TLR2 and TLR4 in generating pro-inflammatory chemokines MCP-1, MIP-1beta, RANTES, and IL-8 but yielded weak TNF-alpha and IL-1 responses. Taken together, the data show that diverse TLR agonists, despite their operation through common pathways induce distinct cytokine/chemokine profiles that in turn have little or no overlap with TCR-mediated response.  相似文献   

16.
HS1 is a protein involved in erythroid proliferation and apoptotic cell death, containing several structurally significant motifs including a C-terminal SH3 domain. HPK1 is a member of the Ste20-related kinase family, which contains four proline-rich sequences and is constitutively associated with HS1 in hematopoietic cells. Recombinant fusion protein GST-SH3HS1 was expressed to assess the binding properties of 16 peptides derived from the HPK1 proline-rich regions. The binding affinities were determined by non-immobilized ligand interaction assay by circular dichroism. Our results revealed that the classical PxxPxK class II binding motif is not sufficient to induce the interaction with the GST-SH3HS1 domain, an event dependent on the presence of additional basic residue(s) located at the C-terminus of the PxxPxK motif: Lys−5 in P2 peptide and Lys−8 in P4c peptide. Lys replacement by Arg residues decreases the ligand binding affinity. The finding that both SH3HS1 domain and full-length HS1 protein bind to P2 peptide with similar affinity demonstrates that the whole protein sequence does not affect the interaction properties of the domain. In silico models of SH3HS1 as a complex with P2 or P4c highlight the domain residues that interact with the recognition determinants of the peptide ligand and that cooperate in the complex stabilization.  相似文献   

17.
Fatty acid-induced cytotoxicity is believed to recapitulate lipotoxicity seen in obese type-2 diabetes, and, thus, contribute to beta cell loss in the disease. These studies were initiated to determine whether the Toll-like receptor (TLR) signaling pathway was involved in palmitate-induced beta cell death. Treatment of INS-1 beta cells with palmitate enhanced interaction between TLR and myeloid differentiation factor88 (MyD88). Concomitant with TLR/MyD88 interaction, the level of phospho-C-Jun N-terminal kinase (phospho-JNK) showed an increase; however, the level of inhibitory factor kappa B alpha (IκBα) showed a decrease. Gene knockdown of TLR4 prevented palmitate-induced INS-1 cell death, while knockdown of TLR2 did not. In addition, gene knockdown of TLR4 prevented palmitate-induced increase of phospho-JNK and decrease of IκBα. JNK inhibitor SP60125 significantly protected against palmitate-induced INS-1 cell death, while IκB kinase (IKK) inhibitor acetylsalicylate did not. These data suggest involvement of JNK activation through the TLR4 signaling pathway in palmitate-induced INS-1 beta cell death.  相似文献   

18.
Toll-like receptors (TLRs) are essential for host defense. Although several TLRs reside on the cell surface, nucleic acid recognition of TLRs occurs intracellularly. For example, the receptor for CpG containing bacterial and viral DNA, TLR9, is retained in the endoplasmic reticulum. Recent evidence suggests that the localization of TLR9 is critical for appropriate ligand recognition. Here we have defined which structural features of the TLR9 molecule control its intracellular localization. Both the cytoplasmic and ectodomains of TLR9 contain sufficient information, whereas the transmembrane domain plays no role in intracellular localization. We identify a 14-amino acid stretch that directs TLR9 intracellularly and confers intracellular localization to the normally cell surface-expressed TLR4. Truncation or mutation of the cytoplasmic tail of TLR9 reveals a vesicle localization motif that targets early endosomes. We propose a model whereby modification of the cytoplasmic tail of TLR9 results in trafficking to early endosomes where it encounters CpG DNA.  相似文献   

19.
We describe a monoclonal antibody, WT-31, that reacted with all human T lymphocytes. Electrophoretic analysis of the material reacting with WT-31 revealed that it precipitated predominantly an 80-kD disulfide-linked heterodimer from the cell surface-labeled T leukemic cell line HPB-ALL. This heterodimer was identical to the one precipitated with a recently described monoclonal reagent, T40/25, which recognizes a clonotypic structure on HPB-ALL. The target antigen of WT-31 comodulated with T3 after incubation of T cells with excess anti-T3 antibody, indicating that the WT-31 target antigen is associated with T3. We also found that anti-T3 reagents, but not the clonotypic reagent T40/25, blocked binding of FITC-labeled WT-31 to HPB-ALL cells. This indicates that the T cell receptor epitope recognized by WT-31 is located close to the epitopes recognized by the anti-T3 reagents anti-Leu-4 and SPV-T3b but distal from the clonotypic T40/25 epitope. Functional studies showed that WT-31 reacts similar to anti-T3 antibodies. It is mitogenic for resting T cells, blocks cytolysis mediated by alloantigen-specific CTL clones, and induces antigen-nonspecific cytolysis by CTL clones against Daudi target cells. WT-31 did not inhibit the formation of conjugates, but it blocked cytolysis just before or during the Ca2++-dependent programming for lysis. We conclude that WT-31 is an antibody that recognizes a common determinant on the T cell receptor for antigen. The present results support the notion that the two chains of the T cell receptor (alpha and beta) form a functional protein ensemble with the three invariable T3 polypeptide chains (T3-gamma-, delta-, epsilon).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号