首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Transient receptor potential, melastatin-like 7 (Trpm7) is a combined ion channel and kinase implicated in the differentiation or function of many cell types. Early lethality in mice and frogs depleted of the corresponding gene impedes investigation of the functions of this protein particularly during later stages of development. By contrast, zebrafish trpm7 mutant larvae undergo early morphogenesis normally and thus do not have this limitation. The mutant larvae are characterized by multiple defects including melanocyte cell death, transient paralysis, and an ion imbalance that leads to the development of kidney stones. Here we report a requirement for Trpm7 in differentiation or function of dopaminergic neurons in vivo. First, trpm7 mutant larvae are hypomotile and fail to make a dopamine-dependent developmental transition in swim-bout length. Both of these deficits are partially rescued by the application of levodopa or dopamine. Second, histological analysis reveals that in trpm7 mutants a significant fraction of dopaminergic neurons lack expression of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Third, trpm7 mutants are unusually sensitive to the neurotoxin 1-methyl-4-phenylpyridinium, an oxidative stressor, and their motility is partially rescued by application of the iron chelator deferoxamine, an anti-oxidant. Finally, in SH-SY5Y cells, which model aspects of human dopaminergic neurons, forced expression of a channel-dead variant of TRPM7 causes cell death. In summary, a forward genetic screen in zebrafish has revealed that both melanocytes and dopaminergic neurons depend on the ion channel Trpm7. The mechanistic underpinning of this dependence requires further investigation.  相似文献   

2.
3.
In recent years there has been a significant increase in both acute and chronic toxicity associated with the more successful but now highly intensive chemotherapy (CT) regimens used to treat childhood cancers. The incidence of childhood cancers coincides with periods of rapid skeletal development. Consequently, short stature and osteoporosis are important long-term effects in adult survivors. Clinical data indicate that the effects of CT, including glucocorticoids, on final height are due to direct effects of these drugs on the skeleton. The multiple modes of action of CT drugs suggest a complex and diverse influence on chondrocytes, extracellular matrix and bone cells. However, only limited data demonstrate these direct effects on the proliferative capacity of growth plate chondrocytes and on key steps of endochondral ossification, the multistep process that determines rate and extent of long bone growth. Endochondral ossification requires coordinated maturation, proliferation and differentiation of growth plate chondrocytes leading to hypertrophic cells which eventually undergo apoptosis to leave a cartilaginous scaffold that is mineralized prior to the laying down of new bone. Disruption of the physiological cellular activity of growth plate chondrocytes and/or bone cells result in skeletal growth disturbances. Thus, CT drugs which disrupt normal cell division may manifest their effects on the growth plate as either a reduction in cell number and/or the loss of functional integrity of extracellular matrix. Histological and cell kinetic studies, using in vivo and in vitro models of long bone growth, are essential to increase our understanding of the cellular mechanisms involved and to finally determine how the individual growth potential might be maintained during treatment for childhood cancers.  相似文献   

4.
Patterns of growth and variation of the appendicular skeleton were examined in Thorius, a speciose genus of minute terrestrial plethodontid salamanders from southern Mexico. Observations were based primarily on ontogenetic series of each of five species that collectively span the range of adult body size in the genus; samples of adults of each of seven additional species provided supplemental estimates of the full range of variation of limb skeletal morphology. Limbs are generally reduced, i.e., pedomorphic, in both overall size and development, and they are characterized by a pattern of extreme variation in the composition of the limb skeleton, especially mesopodial elements, both within and between species. Fifteen different combinations of fused carpal or tarsal elements are variably present in the genus, producing at least 18 different overall carpal or tarsal arrangements, many of which occur in no other plethodontid genus. As many as four carpal or tarsal arrangements were observed in single population samples of each of several; five tarsal arrangements were observed in one population of T. minutissimus. Left-right asymmetry of mesopodial arrangement in a given specimen is also common. In contrast, several unique, nonpedomorphic features of the limb skeleton, including ossification of the typically cartilaginous adult mesopodial elements and ontogenetic increase in the degree of ossification of long bones, are characteristic of all species and distinguish Thorius from most related genera. They form part of a mechanism of determinate skeletal growth that restricts skeletal growth after sexual maturity. Interspecific differences in the timing of the processes of appendicular skeletal maturation relative to body size are well correlated with interspecific differences in mean adult size and size at sexual maturity, suggesting that shifts in the timing of skeletal maturation provide a mechanism of achieving adult size differentiation among species. Processes of skeletal maturation that confer determinate skeletal growth in Thorius are analogous to those typical of most amniotes – both groups exhibit ontogenetic reduction and eventual disappearance of the complex of stratified layers of proliferating and maturing cartilage in long bone epiphyses – but, unlike most amniotes, Thorius lacks secondary ossification centers. Thus, the presence of secondary ossification centers cannot be used as a criterion for establishing determinate skeletal growth in all vertebrates.  相似文献   

5.
Zebrafish craniofacial, skeletal, and tooth development closely resembles that of higher vertebrates. Our goal is to identify viable adult zebrafish mutants that can be used as models for human mineralized craniofacial, dental, and skeletal system disorders. We used a large-scale forward-genetic chemical N-ethyl-nitroso-urea mutagenesis screen to identify 17 early lethal homozygous recessive mutants with defects in craniofacial cartilage elements, and 7 adult homozygous recessive mutants with mineralized tissue phenotypes including craniofacial shape defects, fused sutures, dysmorphic or missing skeletal elements, scoliosis, and neural arch defects. One mutant displayed both an early lethal homozygous phenotype and an adult heterozygous phenotype. These results extend the utility of the zebrafish model beyond the embryo to study human bone and cartilage disorders.  相似文献   

6.
7.
Mice carrying a targeted disruption of BmprIB were generated by homologous recombination in embryonic stem cells. BmprIB(-/-) mice are viable and, in spite of the widespread expression of BMPRIB throughout the developing skeleton, exhibit defects that are largely restricted to the appendicular skeleton. Using molecular markers, we show that the initial formation of the digital rays occurs normally in null mutants, but proliferation of prechondrogenic cells and chondrocyte differentiation in the phalangeal region are markedly reduced. Our results suggest that BMPRIB-mediated signaling is required for cell proliferation after commitment to the chondrogenic lineage. Analyses of BmprIB and Gdf5 single mutants, as well as BmprIB; Gdf5 double mutants suggests that GDF5 is a ligand for BMPRIB in vivo. BmprIB; Bmp7 double mutants were constructed in order to examine whether BMPRIB has overlapping functions with other type I BMP receptors. BmprIB; Bmp7 double mutants exhibit severe appendicular skeletal defects, suggesting that BMPRIB and BMP7 act in distinct, but overlapping pathways. These results also demonstrate that in the absence of BMPRIB, BMP7 plays an essential role in appendicular skeletal development. Therefore, rather than having a unique role, BMPRIB has broadly overlapping functions with other BMP receptors during skeletal development.  相似文献   

8.
Childhood hypothyroidism delays ossification and bone mineralization, whereas adult thyrotoxicosis causes osteoporosis. To determine how effects of thyroid hormone (T3) during development manifest in adult bone, we characterized TRalpha1(+/m)beta(+/-) mice, which express a mutant T3 receptor (TR) alpha1 with dominant-negative properties due to reduced ligand-binding affinity. Remarkably, adult TRalpha1(+/m)beta(+/-) mice had osteosclerosis with increased bone mineralization even though juveniles had delayed ossification. This phenotype was partially normalized by transient T3 treatment of juveniles and fully reversed in compound TRalpha1(+/m)beta(-/-) mutant mice due to 10-fold elevated hormone levels that allow the mutant TRalpha1 to bind T3. By contrast, deletion of TRbeta in TRalpha1(+/+)beta(-/ -) mice, which causes a 3-fold increase of hormone levels, led to osteoporosis in adults but advanced ossification in juveniles. T3-target gene analysis revealed skeletal hypothyroidism in TRalpha1(m/+)beta(+/-) mice, thyrotoxicosis in TRalpha1(+/+)beta(-/-) mice, and euthyroidism in TRalpha1(+/)beta(-/-) double mutants. Thus, TRalpha1 regulates both skeletal development and adult bone maintenance, with euthyroid status during development being essential to establish normal adult bone structure and mineralization.  相似文献   

9.
10.
Thyroid hormone (T(3)) regulates bone turnover and mineralization in adults and is essential for skeletal development. Surprisingly, we identified a phenotype of skeletal thyrotoxicosis in T(3) receptor beta(PV) (TRbeta(PV)) mice in which a targeted frameshift mutation in TRbeta results in resistance to thyroid hormone. To characterize mechanisms underlying thyroid hormone action in bone, we analyzed skeletal development in TRalpha1(PV) mice in which the same PV mutation was targeted to TRalpha1. In contrast to TRbeta(PV) mice, TRalpha1(PV) mutants exhibited skeletal hypothyroidism with delayed endochondral and intramembranous ossification, severe postnatal growth retardation, diminished trabecular bone mineralization, reduced cortical bone deposition, and delayed closure of the skull sutures. Skeletal hypothyroidism in TRalpha1(PV) mutants was accompanied by impaired GH receptor and IGF-I receptor expression and signaling in the growth plate, whereas GH receptor and IGF-I receptor expression and signaling were increased in TRbeta(PV) mice. These data indicate that GH receptor and IGF-I receptor are physiological targets for T(3) action in bone in vivo. The divergent phenotypes observed in TRalpha1(PV) and TRbeta(PV) mice arise because the pituitary gland is a TRbeta-responsive tissue, whereas bone is TRalpha responsive. These studies provide a new understanding of the complex relationship between central and peripheral thyroid status.  相似文献   

11.
In tetrapod long bones, Hedgehog signalling is required for osteoblast differentiation in the perichondrium. In this work we analyse skeletogenesis in zebrafish larvae treated with the Hedgehog signalling inhibitor cyclopamine. We show that cyclopamine treatment leads to the loss of perichondral ossification of two bones in the head. We find that the Hedgehog co-receptors patched1 and patched2 are expressed in regions of the perichondrium that will form bone before the onset of ossification. We also show that cyclopamine treatment strongly reduces the expression of osteoblast markers in the perichondrium and that perichondral ossification is enhanced in patched1 mutant fish. This data suggests a conserved role for Hedgehog signalling in promoting perichondral osteoblast differentiation during vertebrate skeletal development. However, unlike what is seen during long bone development, we did not observe ectopic chondrocytes in the perichondrium when Hedgehog signalling is blocked. This result may point to subtle differences between the development of the skeleton in the skull and limb.  相似文献   

12.
Chondrodysplasias are a genetically heterogeneous group of skeletal disorders. Mutations in genes coding for cartilage oligomeric matrix protein (COMP), collagen IX and matrilin-3 have been described to cause the autosomal dominantly inherited form of multiple epiphyseal dysplasia (MED). Even though there is clear evidence that these cartilage matrix proteins interact with each other, their exact functions in matrix organisation and bone development still need to be elucidated. We generated a mouse model lacking both collagen IX and COMP to study the potential complementary role of these proteins in skeletal development. Mice deficient in both proteins exhibit shortened and widened long bones as well as an altered bone structure. They display severe growth plate abnormalities with large hypocellular areas in the central parts of the tibia. In addition, chondrocytes in the proliferative and hypertrophic zones do not show their typical columnar arrangement. These phenotypical traits were not observed in mice deficient only in COMP, while mice lacking only collagen IX showed similar growth plate disturbances and shorter and wider tibiae. The contribution of COMP to the phenotype of mice deficient in both collagen IX and COMP appears minor, even though clear differences in the deposition of matrilin-3 were detected.  相似文献   

13.
The growth and repair of skeletal muscle after birth depends on satellite cells that are characterized by the expression of Pax7. We show that Pax3, the paralogue of Pax7, is also present in both quiescent and activated satellite cells in many skeletal muscles. Dominant-negative forms of both Pax3 and -7 repress MyoD, but do not interfere with the expression of the other myogenic determination factor, Myf5, which, together with Pax3/7, regulates the myogenic differentiation of these cells. In Pax7 mutants, satellite cells are progressively lost in both Pax3-expressing and -nonexpressing muscles. We show that this is caused by satellite cell death, with effects on the cell cycle. Manipulation of the dominant-negative forms of these factors in satellite cell cultures demonstrates that Pax3 cannot replace the antiapoptotic function of Pax7. These findings underline the importance of cell survival in controlling the stem cell populations of adult tissues and demonstrate a role for upstream factors in this context.  相似文献   

14.
Development of the head skeleton involves reciprocal interactions between cranial neural crest cells (CNCCs) and the surrounding pharyngeal endoderm and ectoderm. Whereas elegant experiments in avians have shown a prominent role for the endoderm in facial skeleton development, the relative functions of the endoderm in growth versus regional identity of skeletal precursors have remained unclear. Here we describe novel craniofacial defects in zebrafish harboring mutations in the Sphingosine-1-phospate (S1P) type 2 receptor (s1pr2) or the S1P transporter Spinster 2 (spns2), and we show that S1P signaling functions in the endoderm for the proper growth and positioning of the jaw skeleton. Surprisingly, analysis of s1pr2 and spns2 mutants, as well as sox32 mutants that completely lack endoderm, reveals that the dorsal-ventral (DV) patterning of jaw skeletal precursors is largely unaffected even in the absence of endoderm. Instead, we observe reductions in the ectodermal expression of Fibroblast growth factor 8a (Fgf8a), and transgenic misexpression of Shha restores fgf8a expression and partially rescues the growth and differentiation of jaw skeletal precursors. Hence, we propose that the S1P-dependent anterior foregut endoderm functions primarily through Shh to regulate the growth but not DV patterning of zebrafish jaw precursors.  相似文献   

15.
16.
High mobility group box 1 protein (HMGB1) is a chromatin protein that has a dual function as a nuclear factor and as an extracellular factor. Extracellular HMGB1 released by damaged cells acts as a chemoattractant, as well as a proinflammatory cytokine, suggesting that HMGB1 is tightly connected to the process of tissue organization. However, the role of HMGB1 in bone and cartilage that undergo remodeling during embryogenesis, tissue repair, and disease is largely unknown. We show here that the stage-specific secretion of HMGB1 in cartilage regulates endochondral ossification. We analyzed the skeletal development of Hmgb1(-/-) mice during embryogenesis and found that endochondral ossification is significantly impaired due to the delay of cartilage invasion by osteoclasts, osteoblasts, and blood vessels. Immunohistochemical analysis revealed that HMGB1 protein accumulated in the cytosol of hypertrophic chondrocytes at growth plates, and its extracellular release from the chondrocytes was verified by organ culture. Furthermore, we demonstrated that the chondrocyte-secreted HMGB1 functions as a chemoattractant for osteoclasts and osteoblasts, as well as for endothelial cells, further supporting the conclusion that Hmgb1(-/-) mice are defective in cell invasion. Collectively, these findings suggest that HMGB1 released from differentiating chondrocytes acts, at least in part, as a regulator of endochondral ossification during osteogenesis.  相似文献   

17.
During muscle development, precursor cells fuse to form myofibers. Following injury in adult muscle, quiescent satellite cells become activated to regenerate muscle in a fashion similar to fetal development. Recent studies indicate that murine skeletal myoblasts can differentiate along multiple cell lineages including the osteoblastic pathway. However, little is known about the multipotency of human myogenic cells. Here, we isolate myogenic precursor cells from human fetal and adult muscle by sorting for the laminin-binding alpha7 integrin and demonstrate their differentiation potential and alteration in adhesive behavior. The alpha7-positive human fetal progenitors were efficient at forming myotubes and a majority expressed known muscle markers including M-cadherin and c-Met, but were heterogeneous for desmin and MyoD expression. To test their pluripotent differentiation potential, enriched populations of alpha7-positive fetal cells were subjected to inductive protocols. Although the myoblasts appeared committed to a muscle lineage, they could be converted to differentiate along the osteoblastic pathway in the presence of BMP-2. Interestingly, osteogenic cells showed altered adhesion and migratory activity that reflected growth factor-induced changes in integrin expression. These results indicate that alpha7-expressing fetal myoblasts are capable of differentiation to osteoblast lineage with a coordinated switch in integrin profiles and may represent a mechanism that promotes homing and recruitment of myogenic stem cells for tissue repair and remodeling.  相似文献   

18.
Consensus on placental mammal phylogeny is fairly recent compared to that for vertebrates as a whole. A stable phylogenetic hypothesis enables investigation into the possibility that placental clades differ from one another in terms of their development. Here, we focus on the sequence of skeletal ossification as a possible source of developmental distinctiveness in “northern” (Laurasiatheria and Euarchontoglires) versus “southern” (Afrotheria and Xenarthra) placental clades. We contribute data on cranial and postcranial ossification events during growth in Afrotheria, including elephants, hyraxes, golden moles, tenrecs, sengis, and aardvarks. We use three different techniques to quantify sequence heterochrony: continuous method, sequence‐ANOVA (analysis of variance) and event‐paring/Parsimov. We show that afrotherians significantly differ from other placentals by an early ossification of the orbitosphenoid and caudal vertebrae. Our analysis also suggests that both southern placental groups show a greater degree of developmental variability; however, they rarely seem to vary in the same direction, especially regarding the shifts that differ statistically. The latter observation is inconsistent with the Atlantogenata hypothesis in which afrotherians are considered as the sister clade of xenarthrans. Interestingly, ancestral nodes for Laurasiatheria and Euarchontoglires show very similar trends and our results suggest that developmental homogeneity in some ossification sequences may be restricted to northern placental mammals (Boreoeutheria).  相似文献   

19.
Actin is a key cytoskeletal protein with multiple roles in cellular processes such as polarized growth, cytokinesis, endocytosis, and cell migration. Actin is present in all eukaryotes as highly dynamic filamentous structures, such as linear cables and branched filaments. Detailed investigation of the molecular role of actin in various processes has been hampered due to the multifunctionality of the protein and the lack of alleles defective in specific processes. The actin cytoskeleton of the fission yeast, Schizosaccharomyces pombe, has been extensively characterized and contains structures analogous to those in other cell types. In this study, primarily with the view to uncover actin function in cytokinesis, we generated a large bank of fission yeast actin mutants that affect the organization of distinct actin structures and/or discrete physiological functions of actin. Our screen identified 17 mutants with specific defects in cytokinesis. Some of these cytokinesis mutants helped in dissecting the function of specific actin structures during ring assembly. Further genetic analysis of some of these actin mutants revealed multiple genetic interactions with mutants previously known to affect the actomyosin ring assembly. We also characterize a mutant allele of actin that is suppressed upon overexpression of Cdc8p-tropomyosin, underscoring the utility of this mutant bank. Another 22 mutant alleles, defective in polarized growth and/or other functions of actin obtained from this screen, are also described in this article. This mutant bank should be a valuable resource to study the physiological and biochemical functions of actin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号