首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
松嫩草原拂子茅种群热值、生物量和能量动态的研究   总被引:7,自引:0,他引:7  
拂子茅(Calamagrostis epigejos)全株的叶的热值和季节变化规律相似,呈双峰曲线,2个峰值分别出现在6月中旬和8月初,茎热值的变化呈单峰曲线,峰值出现在8月初,穗笔立枯体的热值变化呈波动型,穗的最大值出现在9月初,立枯估出现在6月中旬,地上部能量现状量的季节变化与生物量变化同步,呈单峰曲线,不同季节能量在各器官中分配比率为:6月中旬为叶>茎>穗,7月初为叶>茎>立枯体>穗,7月中旬为叶>茎>穗>立枯体,8月至9月为叶>茎>立枯体>穗,能量的垂直分配,地上部为从地表至20cm高度逐渐增加,最大值在10-20cm层占地上部总能量的26.91%,然后逐渐下降,地下部能量垂直分布规律是随着深度增加而逐渐减少,能量集中分布在地下0-10cm层在占地下部总能量69.01%。  相似文献   

2.
松嫩草原碱茅(Puccinellia tenuiflora)热值和能量动态的研究   总被引:3,自引:0,他引:3  
郭继勋  王若丹 《生态学报》2001,21(6):896-899
碱茅植株热值的季节变化出现3个峰值,并依次降低,最大值在5月初。茎、叶、穗和立枯体热值的季节变化不规则,茎和叶最大值均在5月初,最小值茎在7月初,叶在6月初;穗最大值在7月中旬,最小值在6月初;立枯体最大值在8月初,最小值在7月中旬。在整个生长季表现为穗热值>叶>茎>立枯体。碱茅种群地上部能量现存量的季节变化,呈单峰曲线,峰值出现在9月初,为6967.75kJ/m^2。不同季节能量在各器官中的分配比率为,5月份为叶>茎;6月份为茎>叶;7月初至中旬为茎>叶>穗>立枯体;8月初至9月初为茎>叶>立枯体>穗;9月中旬为立枯体>叶>茎>穗。能量现存量垂直结构,地上部为从地表至20cm高度逐渐增加,最大值在10-20cm层占地上部能量现存量的36.13%,然后逐渐下降,地下部的变化规律为随着浓度增加能值逐渐减小,最大值在0-10cm层占地下部能量现存量的69.01%。  相似文献   

3.
2005年1月到2005年11月对福建省惠安县赤湖林场不同林龄木麻黄人工林细根养分和能量的季节动态进行了观测,结果表明:(1)6种元素的含量在不同林龄木麻黄细根中都具有明显的季节变化。各林龄细根的N含量一般在冬夏季节较高,且死细根的N浓度高于相同林龄的活细根,除12林龄活细根P浓度在7月份有最大值外,其他各林龄活、死细根在一年中呈波动性下降,K含量在冬季较高,而在其他季节变化幅度不大,除5林龄活细根和18林龄死细根在3月份和7月份有两个峰值外,其他林龄细根Ca含量随季节变化较小,Mg含量随季节变化总体呈下降趋势,而在11月份上升;各林龄C则呈波浪形变化;(2)随着林龄的增大,细根N、P、Mg含量的变化模式相似,都呈先增加,后降低,再增加的趋势,K和Ca含量变化趋势相似,但变动幅度存在差别,C则呈波浪形变化;(3)随着季节的变化,灰分、干重热值和去灰分热值呈"V"形变动,一年中都存在两个峰值,分别在3月份和7月份或9月份;(4)灰分、干重热值和去灰分热值随林龄的增大表现为波浪形增加。由此可见,不同森林类型的细根养分和能量动态具有季节和林龄的特殊性,在进行整个地区森林生态系统物质循环和能量流动研究时,应考虑不同森林类型的特性。  相似文献   

4.
2005年1月到2005年11月对福建省惠安县赤湖林场不同林龄木麻黄人工林细根养分和能量的季节动态进行了观测,结果表明:(1)6种元素的含量在不同林龄木麻黄细根中都具有明显的季节变化。各林龄细根的N含量一般在冬夏季节较高,且死细根的N浓度高于相同林龄的活细根,除12林龄活细根P浓度在7月份有最大值外,其他各林龄活、死细根在一年中呈波动性下降,K含量在冬季较高,而在其他季节变化幅度不大,除5林龄活细根和18林龄死细根在3月份和7月份有两个峰值外,其他林龄细根Ca含量随季节变化较小,Mg含量随季节变化总体呈下降趋势,而在11月份上升;各林龄C则呈波浪形变化;(2)随着林龄的增大,细根N、P、Mg含量的变化模式相似,都呈先增加,后降低,再增加的趋势,K和Ca含量变化趋势相似,但变动幅度存在差别,C则呈波浪形变化;(3)随着季节的变化,灰分、干重热值和去灰分热值呈“V”形变动,一年中都存在两个峰值,分别在3月份和7月份或9月份;(4)灰分、干重热值和去灰分热值随林龄的增大表现为波浪形增加。由此可见,不同森林类型的细根养分和能量动态具有季节和林龄的特殊性,在进行整个地区森林生态系统物质循环和能量流动研究时,应考虑不同森林类型的特性。  相似文献   

5.
科尔沁温带草甸能量平衡的日季变化特征   总被引:1,自引:0,他引:1  
利用2011年9月—2012年10月涡度相关数据和气象观测资料,对科尔沁温带草甸能量平衡的日季变化特征进行分析.结果表明:研究区涡度相关系统全年的能量平衡闭合度为0.77,不同时期能量平衡闭合度的大小顺序为:生长季裸土期积雪期.能量平衡各分量日变化均呈单峰曲线形式,净辐射日变化峰值出现在12:00前后,其余分量的峰值出现时间都稍有滞后.净辐射季节变化呈单峰曲线形式,年平均值为5.71 MJ·m-2·d-1.潜热通量季节变化趋势与净辐射相似,年平均值为2.84 MJ·m-2·d-1.感热通量季节变化呈双峰曲线形式,峰值分别出现在4月和9月,年平均值为1.87 MJ·m-2·d-1.土壤热通量的最大值(3.47 MJ·m-2·d-1)出现在4月,9月以后开始转为负值.全年能量平衡各分量收支比例的大小顺序为:潜热通量感热通量土壤热通量,潜热通量、感热通量和土壤热通量分别占净辐射的49.8%、35.8%和3.1%.全年波文比的季节变化近似"U"型,平均值为1.61;生长季数值较小且较为平稳,平均值为0.18;非生长季数值较大且波动较大,平均值为2.39.  相似文献   

6.
大血藤叶片生化成分的动态变化   总被引:4,自引:0,他引:4  
对自然条件下大血藤叶片生化成分的动态变化进行了研究。结果表明;大血藤叶片可溶性糖,淀粉和总糖含量的动态变化有相同的趋势。在叶片生长季节早期含量较低。随着叶片的生长发育,其含量逐渐上升。至8月达到最大值后逐渐下降,叶片总糖含量与日均净光合速率的季节变化呈极显著的正相关,在整个生长季节中,可溶性糖含量比淀粉高,大血藤叶片总蛋白含量季节性变化呈单峰曲线,在展叶初期含量较低;随后迅速上升,至8月达到最大值后逐渐下降,叶片总糖含量与日均净光合速率的季节变化呈极显著的正相关。在整个生长季节中,可溶性糖含量比淀粉高。大血藤叶片总蛋白含量季节性变化呈单峰曲线,在展叶初期含量较低;随后迅速上升,在6月初达到最大值后逐渐下降,落叶前降至最低占,可溶性蛋白质含量的季节性变化曲线与总蛋白含量基本相似,DNA含量在叶生长初期大幅度上升,至6月达到高峰后迅速下降,以后基本趋向稳定,RNA在叶生长初期有所上升,峰值也出现在6月,以后缓慢下降,到9月降至最低值,在落叶前又有所回升,总核酸含量的季节变化与RNA变化相似,RNA/DNA比值在生长季节中出现3次高峰,大血藤叶片总黄酮含量季节性变化呈“双峰”型,第1高峰期在开花期的5月。第2高峰期在秋季的9月份。  相似文献   

7.
对毛乌素沙地自然生境中油蒿(Artemisia ordosica Krasch. )不同生长期(6月份至9月份)的气体交换参数和枝条水势日变化特征进行了比较研究,并探讨了环境因子对油蒿气体交换参数及枝条水势的影响作用.结果表明:6月份至9月份油蒿的净光合速率日均值波动幅度不大,其大小与当月的土壤含水量不对应,其中8月份的净光合速率日均值最大(13.16 μmol·m-2·s-1);各月份间油蒿的蒸腾速率日均值差异较大,最大值出现在7月份(7.93 mmol·m-2·s-1),与土壤含水量的变化相对应;7月份油蒿的水分利用效率最低,但枝条水势日均值最大,其余3个月水分利用效率波动幅度不大,各月间枝条水势日均值差异也不大且变化幅度较小.在6月份和7月份,油蒿净光合速率的日变化呈双峰型曲线,6月份的峰值出现在8:00和14:00,7月份的峰值出现在10:00和14:00,谷值都出现在12:00;在8月份和9月份则呈单峰型曲线,峰值分别出现在10:00和12:00.在6月份和7月份,油蒿蒸腾速率的日变化均呈双峰型曲线,峰值分别出现在10:00和14:00;在8月份和9月份则呈单峰型曲线,最大值均出现在12:00.在这4个月中,油蒿枝条水势的日变化与大气水势的日变化一致,均在12:00达到最低;油蒿的水分利用效率日变化有着较好的规律性,均为早上最高,然后降低,但总体上变化幅度平缓,表明生长在毛乌素沙地自然生境中的油蒿对环境的适应能力较强.  相似文献   

8.
采用CIRAS-1红外气体分析仪研究梨树不同时期蒸腾速率及水分利用效率变化特征。结果表明:梨树蒸腾速率日变化为单峰型,峰值出现在11:00~P15:00;蒸腾速率的季节变化呈"V"字形,其中5~P8月份逐渐降低,8~P9月份迅速升至最高,生长季平均蒸腾速率为2.66mmol.m-2.s-1;决定蒸腾速率日变化的主要因子为空气温度、叶面温度和水汽压差,且各因子对蒸腾速率日变化的贡献率分别为85%~P96%、76%~P86%和98%。水分利用效率日变化峰值出现在早上7:00~P9:00,然后逐渐降低;水分利用效率的季节变化峰值(5.38μmolCO2/mmolH2O)出现在8月份,5、6、7、9月份的水分利用效率相当,其值在2.86~P3.05μmolCO2/mmolH2O之间,生长季平均为3.44μmolCO2/mmolH2O;相关分析结果表明,水分利用效率受光合有效辐射、空气温度、叶片温度、空气湿度、以及叶片-大气水气压差等各因子的综合作用。  相似文献   

9.
青海海北地区矮嵩草草甸生物量和能量的分配   总被引:15,自引:0,他引:15       下载免费PDF全文
 此项研究工作于1980年在海北高寒草甸生态系统定位站进行。本文研究了青藏高原地区分布面积广、草质优良,在畜牧业生产中有重要意义的矮嵩草草甸的生物量和它的能量分配关系,测定了地上,地下生物量和不同物候期主要植物类群的热值含量。研究结果表明:矮嵩草草甸生物量的季节动态较为明显,地上生物量随生长季节的水热条件和植物的生长发育阶段而变化,9月初地上生物量达到峰值(296.66g/m2),此后生物量逐渐减少,到枯黄前而停止;地下根系生物量在返青期较高,生长旺盛期最低,枯黄期最高,这同植物生长发育阶段的物质运转有关。矮嵩草草甸主要植物类群的热值以生长旺盛期最高,枯黄期次之,返青期较低;各类草的热值,以莎草类最高,禾草类次之,杂类草最低。矮嵩草草甸总初级生产量为909.49g/m2·年,其中地上为296.66g/m2·年,地下为596.67g/m2·年,枯枝落叶为16.16g/m2·年。群落在不同生长期所固定的太阳能数值不一,以枯黄前所固定的太阳能为最多,生长期整个群落的光能利用率为0.295%。  相似文献   

10.
基于辽宁冰砬山森林生态系统定位研究站2012年森林内、外微气象观测数据,采用波文比-能量平衡法(BERB)研究了辽东山区天然次生林能量平衡组分及蒸散特征。结果表明,天然次生林全年获得净辐射能量(Rn)为1.63×109J/m2,其中生长季Rn占全年的71%。Rn月均值呈单峰状季节变化;5月份Rn最大,达101.73 W/m2;12月份最小,仅为-2.38 W/m2。Rn在晴朗天气的日变化呈单峰型,峰值出现在12:00前后,Rn在日出后0.5 h至日落前1.5 h为正值,其它时间为负值。潜热通量(LE)、感热通量(H)在晴朗天气呈单峰型日变化规律。LE呈单峰型季节变化,7月份最大。H呈双峰型季节变化,峰值在4月份,次峰值在9月份。波文比(β)近似呈"U"字型季节变化,非生长季β均值为1.50,即H占有效能量的60%,生长季β均值为0.43,即LE占有效能量的70%。生长季土壤热通量(G)为能量支出项,约占有效能量的2.5%,晴朗天气呈单峰型日变化。非生长季G为能量收入项,约占有效能量的6.8%,1月份几乎没有日变化。辽东山区天然次生林全年蒸散(E)总量为541.8 mm,占全年降水总量的70.3%,蒸散耗水是该森林生态系统最主要的水分支出项。  相似文献   

11.
There were two peaks of seasonal changes of the calorific value in shoot and leaves of Calamagrostis epigejos in middle June and in the early August respectively. The calorific value in stem presented a single peak curve which appeared in the early August. The calorific values in inflorescence and dead standing showed a fluctuation and the peak value of inflorescence was in the early September and that of dead standing was in middle June. The seasonal changes of energy standing crop on the above-ground part synchronized with that of the biomass, which presented a single peak curve. The energy allocated to each organ in different seasons was in the order as leaves >stem >inflorescence in middle June, leaves >stem >dead standing >inflorescence in early July, leaves >stem >inflorescence >dead standing in middle July, and leaves >stem >dead standing >inflorescence from August to September. The vertical allocation of energy in the parts of above-ground was that the energy value gradually increased from the surface to the 20 cm high level and the maximum value at the 10-20 cm high level which made up 26.91% of energy on the above-ground partion, and then it was decreased. In the under-ground portion, the energy value progressively decreased with depth and the maximum value was at 0-10 cm depth layer which made up 69.01% of energy of the under-ground portion.  相似文献   

12.
松嫩平原羊草草甸草原主要植物种群能量积累和分配   总被引:5,自引:2,他引:5  
在松嫩平原羊草草甸草原,羊草、拂子茅、碱茅和虎尾草各器官热值的季节变化呈波动型,但总的规律是穗>叶>茎>立枯体.4种植物种群地上部能量现存量的季节变化均呈单峰曲线,能量积累量为羊草>拂子茅>虎尾草>碱茅.能量增长率一般呈双峰曲线,第一次峰值出现在抽穗期,第二次在种子成熟期,生长末期出现负值.地上部能量的水平分布规律,不同生育期在各器官中的分配比率不同.4种植物种群能量的垂直分布规律相似,即地上部能量的垂直空间分配格局基本上呈塔形,最大值出现在10-30cm空间内.地下部能量垂直结构由地表至土壤深层呈典型的倒塔形,最大值在0-10cm层.地下部的能量现存量约为地上部的3-4倍。  相似文献   

13.
 本文报告了甘肃天祝高寒珠芽蓼(Polygonum viviparum)草甸群落地上及地下四部分生物量的热值和营养成分动态,并对其放牧利用的价值进行了总的评价。 6—9月现存量的热值平均为18330焦/克干物质,或20279焦/克去灰分物质,较立枯物+凋落物、活根、死根的平均值为大;死根略大于活根。在珠芽蓼及其他大多数植物种子成熟期的8月下旬,现存量的热值最大,其他三部分的热值变化也有其各自的特点。现存量6—9月的平均营养成分以绝对干重计为:粗蛋白13.52%,粗脂肪2.25,粗纤维22.99,无氮浸出物51.88,粗灰分9.61(其中钙1.627,磷0.164);在时间变化上四部分各有其特点。根据地形、植物组成、产量、易食性、适口性、热值和营养成分等综合条件,认为珠芽蓼草甸是良好的放牧地。  相似文献   

14.
东北羊草天然草地的初级生产力   总被引:1,自引:0,他引:1  
祖元刚 《植物研究》1991,11(4):117-122
羊草天然草地位于欧亚草原带的东部,广泛分布于苏联的贝加尔地区,蒙古人民共和国的北部和东部以及中国的内蒙古高原和东北平原。根据地带性植被的观点,以旱中生草本植物为优势,同时混生一定的中生草本植物的中国东北羊草天然草地属于草甸草原,它是中国温带的重要放牧场之一。 中国东北羊草天然草地的结构比较单一,单草种群在草地中居绝对优势地位。本项研究测定了羊草天然草地现存量的季节变化,其地上部分现存量的峰值出现在8月24日,为4758.33KJ/m2;地下部分现存量的峰值也出现在8月24日,为35977.65KJ/m2。羊草天然草地地上部分的净生产量为6288.06KJ/m2·a,地下部分的净生产量为19913.18KJ/m2·a,总净生产量为26198.24KJ/m2·a。  相似文献   

15.
A phenological-type synthesis was attempted for 10 years of limnological data of a brown-water stream of Alberta, Canada. The objectives were to predict the normal occurrence of seasonal events in the stream and to formulate indices upon which to base general stream management strategies. The stream supports a diverse chironomid fauna (109 species); and four taxa, chironomids, ostracods and the ephemeropteransLeptophlebia cupida andBaetis tricaudatus, account for 61% of the total yearly fauna by numbers. There are two obvious major seasons: a 7 month ice-free season (ca 15 April–15 November) and a 5 month winter season. Based on numerical classification of physical and chemical parameters, the ice-free season is separated into spring (April and May), summer (June, July and August) and autumn (September and October) seasons; and these four seasons can serve as the basis for describing biological seasonality. There are few detectable periodic events during the long, 5-month winter season: flow and water temperature are relatively constant and at minimum values. There are no reproductive periods for species studied; no new generations appear; drift densities are at minimum values; and for most taxa, little growth takes place in winter. Some of the important phenological events of the three ice-free seasons include: (1) a total emergence, hence reproductive, period of 6 months (April–September) for aquatic insects studied, with the largest number of taxa reproducing in late June and early July; (2) a 31/2 month period (late April–early August) when water temperatures are on the rise (log phase of total degree days curve), with maximum rate increase in May, maximum rate decrease in October, and maximum water temperature values in early August; (3) a completely green (trees and marsh grasses) watershed of less than 2 months (late June–early August); (4) a leaf-drop period of 11/2 months (September–mid October), with maximum litter-fall rate in early September; (5) maximum discharge in April; (6) minimum standing crop by numbers in April and maximum numbers in September; (7) maximum daily drift and drift densities (all taxa) in August; (8) maximum impounding effect of beaver dams in September; (9) maximum aquatic macrophyte standing crop in September; and (10) maximum ‘potential’ food resources (detritus of aquatic macrophyte and terrestrial leaf origin) in mid October.  相似文献   

16.
三江平原典型草甸小叶章种群地上生物量动态   总被引:17,自引:0,他引:17  
倪红伟  张兴 《植物研究》1998,18(3):328-335
本文在东北三江平原典型草甸小叶章种群地上生物量及其组成动态关系的研究结果表明,小叶章种群地上生物量及其组成部分茎,叶,穗生物量季节动态的呈单峰型,在7月末达到极大值,分别为99.695,571.48,411.58,13.89g/M^2抛物线拟合效果良好,且相互间存在明显的线性关系,直线拟合效果良好,F/C〈1,说明其生产效率较典型草原低,而高于同地区的芦苇种各及陕北黄土高原的禾草群落,F/C值和结  相似文献   

17.
湿地芦苇植株氮素分布动态特征分析   总被引:8,自引:0,他引:8       下载免费PDF全文
 湿地植物组织器官氮素变化是湿地氮循环的一个重要环节。对盘锦湿地芦苇(Phragmites australis)植株整个生长季地上和地下不同器官的含氮量进行分析, 结果表明: 芦苇不同器官(叶片、茎秆、根须、根茎)的含氮量差异显著, 总体表现为叶片>茎秆>根须>根茎, 地上器官的含氮量大于地下器官, 且各器官含氮量的高值出现在生育前期。生长期叶片含氮量与累积叶面积指数呈负相关关系, 而成熟期叶片含氮量与叶面积指数呈负相关关系; 根茎含氮量随土壤深度的增加而增加; 根系含氮量与生物量呈线性关系。整个生长季芦苇群落氮库随生长进程逐渐增大, 2005年芦苇地上冠层和地下30 cm以上的氮储量分别为25.76和24.04 g·m–2。  相似文献   

18.
 线叶菊草地总地上生物量的增长规律符合Logistic增长,最大值出现在8月中旬,为198.15g/m2。返青后,线叶菊较同群落内的禾草和杂类草提前达到其生物量最大值。线叶菊、禾草和杂类草的地上生物量的增长与降水量和≥5℃积温呈显著或极显著正相关。地下生物量的季节变化曲线大致为“U”字形,最低值出现在8月中旬,而在早春和秋末时期地下生物量基本相等。地下生物量最大值出现在10月中旬,为1608.5g/m2(干物质)。该草地地上部分净第一性生产力为256.74gm2·a,地下部分为599.51g/m2·a(干物重计)。将生长季内以凋落物形式损失的生物量计算在内,得到的地上净第一性生产力比用极大现存量法估测的结果高出29.57%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号