首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the moth Manduca sexta, the number and morphology of neuronal connections between the antennal lobes and the protocerebrum were examined. Cobalt injections revealed eight morphological types of neurons with somata adjacent to the AL neuropil that project in the inner, middle, and outer antenno-cerebral tracts to the protocerebrum. Neurons innervating the macroglomerular complex and many neurons with fibers in the inner antennocerebral tract have uniglomerular antennal-lobe arborizations. Most neurons in the middle and outer antenno-cerebral tracts, on the other hand, seem to innervate more than one glomerulus. Protocerebral areas receiving direct input from the antennal lobe include the calyces of the mushroom bodies, and circumscribed areas termed olfactory foci in the lateral horn of the protocerebrum and several other regions, especially areas in close proximity to the mushroom bodies. Fibers in the inner antenno-cerebral tract that innervate the male-specific macroglomerular complex have arborizations in the protocerebrum that are distinct from the projections of sexually non-specific neurons. Protocerebral neurons projecting into the antennal lobe are much less numerous than antennal-lobe output cells. Most of these protocerebral fibers enter the antennal lobe in small fiber tracts that are different from those described above. In the protocerebrum, these centrifugal cells arborize in olfactory foci and also in the inferior median protocerebrum and the lateral accessory lobes. The morphological diversity of connections between the antennal lobes and the protocerebrum, described here for the first time on a single-cell level, suggests a much greater physiological complexity of the olfactory system than has been assumed so far.  相似文献   

2.
Summary 322 neurons were recorded intracellularly within the central part of the insect brain and 150 of them were stained with Lucifer Yellow or cobaltous sulphide. Responses to mechanical, olfactory, visual and acoustical stimulation were determined and compared between morphologically different cell types in different regions of the central brain. Almost all neurons responded to multimodal stimulation and showed complex responses. It was not possible to divide the cells into different groups using physiological criteria alone.Extrinsic neurons with projections to the calyces connect the mushroom bodies with the deutocerebrum and also with parts of the diffuse protocerebrum. These cells probably give input to the mushroom body system. The majority are multimodal and they often show olfactory responses. Among those cells that extend from the antennal neuropil are neurons that respond to non-antennal stimulation (Figs. 1, 2).Extrinsic neurons with projections in the lobes of the mushroom bodies often project to the lateral protocerebrum. Anatomical and physiological evidence suggest that they form an output system of the mushroom bodies. They are also multimodal and often exhibit long lasting after discharges and changes in sensitivity and activity level, which can be related to specific stimuli or stimulus combinations (Figs. 3, 4).Extrinsic neurons, especially those projecting to the region where both lobes bifurcate, exhibit stronger responses to multimodal stimuli than other local brain neurons. Intensity coding for antennal stimulation is not different from other areas of the central protocerebrum, but the signal-tonoise ratio is increased (Fig. 5).Abbreviation AGT antenno-glomerular tract  相似文献   

3.
Summary Information processing in the mushroom bodies which are an important part of most invertebrate central nervous systems was analysed by extracellular electrophysiological techniques. The mushroom bodies consist of layers of parallel intrinsic neurons which make synaptic contact with extrinsic input and output neurons. The intrinsic neurons (approximately 170,000/mushroom body) have very small axon diameters (0.1–1 m) which makes it difficult to record their activity intracellularly. In order to analyse the functional properties of this neuropil field potentials were measured extracellularly.Series of averaged evoked potentials (AEPs) were recorded along electrode tracks at consecutive depth intervals in different parts of the mushroom bodies of the bee. These potentials were elicited by olfactory, mechanical and visual stimuli.In order to locate the synaptic areas generating these potentials, current source-densities (CSD) were calculated using the consecutively measured evoked potentials. The conductivities of the extracellular space along the electrode tracks in the pedunculus and calyx and in part of the alpha-lobe of the mushroom bodies were found to be constant.The CSD analysis reveals a complex pattern of source-sink distributions in the mushroom bodies. There is a high degree of correlation between current sinks and sources detected by CSD analysis and the morphological distribution of neurons.The CSD analysis shows that the inputs and outputs of the mushroom bodies involve multimodal synaptic interactions, whereas information processing in the intrinsic Kenyon-cells is limited to sensory inputs from the antenna.Comparison of the electrophysiological with the histological results shows that the intrinsic cells of the mushroom bodies are physiologically not a homogeneous group as is often proposed. Among the intrinsic neurons clearly defined areas of current sources and sinks can be identified and attributed to Kenyon-cells in different layers.Abbreviations AEP averaged evoked potentials - AGT antennoglomerular tract - CSD current source-density - PCT antennoglomerular tract  相似文献   

4.
As a first step towards understanding the functional role of neuroactive substances in the first olfactory center of the male silkworm moth Bombyx mori, we carried out an immunocytochemical identification of antennal lobe neurons. Antibodies against gamma-aminobutyric acid (GABA), FMRFamide, serotonin, tyramine and histamine were applied to detect their existence in the antennal lobe. In the present immunocytochemical study, we clarified four antenno-cerebral tracts from their origin and projection pathways to the protocerebrum, and revealed the following immunoreactive cellular organization in the antennal lobe. 1) Local interneurons with cell bodies in the lateral cell cluster showed GABA, FMRFamide and tyramine immunoreactivity. 2) Projection neurons passing through the middle antenno-cerebral tract with cell bodies in the lateral cell cluster showed GABA and FMRFamide immunoreactivity. Projection neurons passing through the outer antenno-cerebral tract with cell bodies in the lateral cell cluster showed FMRFamide immunoreactivity. 3) Centrifugal neurons passing through the inner antenno-cerebral tract b with cell bodies located outside the antennal lobe showed serotonin and tyramine immunoreactivity. Our results revealed basic distribution patterns of neuroactive substances in the antennal lobe and indicated that each projection pathway from the antennal lobe to the protocerebrum contains specific combination of neuroactive substances.  相似文献   

5.
Although it has been known that olfactory and mechanical inputs from the antenna converge in the antennal lobe of the deutocerebrum of the American cockroach, the capacity of antennal lobe neurons to integrate cues from these modalities was never examined. In the present study, neurons responsive to both the odor of lemon oil and to lateral displacement of the antenna were used to compare the effects of unimodal and bimodal stimulation. The combination of olfactory and mechanical stimuli produced increases over unimodal olfactory responses in 61% (30/49) of the neurons. In the remaining neurons the response either decreased (20%; 10/49), or no bimodal interaction was apparent (19%; 9/49). Dye injection (lucifer yellow) following physiological characterization revealed that these bimodal neurons are local neurons or projection neurons. The antennal lobe links the inputs from olfactory and mechanosensory systems and provides a substrate through which olfactory and mechanical stimuli influence one another's effects. Accepted: 29 September 1997  相似文献   

6.
An outstanding challenge in olfactory neurobiology is to explain how glomerular networks encode information about stimulus mixtures, which are typical of natural olfactory stimuli. In the moth Manduca sexta, a species-specific blend of two sex-pheromone components is required for reproductive signaling. Each component stimulates a different population of olfactory receptor cells that in turn target two identified glomeruli in the macroglomerular complex of the males antennal lobe. Using intracellular recording and staining, we examined how responses of projection neurons innervating these glomeruli are modulated by changes in the level and ratio of the two essential components in stimulus blends. Compared to projection neurons specific for one component, projection neurons that integrated information about the blend (received excitatory input from one component and inhibitory input from the other) showed enhanced ability to track a train of stimulus pulses. The precision of stimulus-pulse tracking was furthermore optimized at a synthetic blend ratio that mimics the physiological response to an extract of the females pheromone gland. Optimal responsiveness of a projection neuron to repetitive stimulus pulses therefore appears to depend not only on stimulus intensity but also on the relative strength of the two opposing synaptic inputs that are integrated by macroglomerular complex projection neurons.  相似文献   

7.
Mushroom bodies are central brain structures and essentially involved in insect olfactory learning. Within the mushroom bodies γ-aminobutyric acid (GABA)-immunoreactive feedback neurons are the most prominent neuron group. The plasticity of inhibitory neural activity within the mushroom body was investigated by analyzing modulations of odor responses of feedback neurons during olfactory learning in vivo. In the honeybee, Apis mellifera, feedback neurons were intracellularly recorded at their neurites. They produced complex patterns of action potentials without experimental stimulation. Summating postsynaptic potentials indicate that their synaptic input region lies within the lobes. Odor and antennal sucrose stimuli evoked excitatory phasic-tonic responses. Individual neurons responded to various odors; responses of different neurons to the same odor were highly variable. Response modulations were determined by comparing odor responses of feedback neurons before and after one-trial olfactory conditioning or sensitisation. Shortly after pairing an odor stimulus with a sucrose reward, odor-induced spike activity of feedback neurons decreased. Repeated odor stimulations alone, equally spaced as in the conditioning experiment, did not affect the odor-induced excitation. A single sensitisation trial also did not alter odor responses. These findings indicate that the level of odor-induced inhibition within the mushroom bodies is specifically modulated by experience. Accepted: 9 September 1999  相似文献   

8.
Two distinct neuronal pathways connect the first olfactory neuropil, the antennal lobe, with higher integration areas, such as the mushroom bodies, via antennal lobe projection neurons. Intracellular recordings were used to address the question whether neuroanatomical features affect odor-coding properties. We found that neurons in the median antennocerebral tract code odors by latency differences or specific inhibitory phases in combination with excitatory phases, have a more specific activity profile for different odors and convey the information with a delay. The neurons of the lateral antennocerebral tract code odors by spike rate differences, have a broader activity profile for different odors, and convey the information quickly. Thus, rather preliminary information about the olfactory stimulus first reaches the mushroom bodies and the lateral horn via neurons of the lateral antennocerebral tract and subsequently odor information becomes more specified by activities of neurons of the median antennocerebral tract. We conclude that this neuroanatomical feature is not related to the distinction between different odors, but rather reflects a dual coding of the same odor stimuli by two different neuronal strategies focusing different properties of the same stimulus.  相似文献   

9.
Responses of neurons in the antennal lobe (AL) of the moth Manduca sexta to stimulation of the ipsilateral antenna by odors consist of excitatory and inhibitory synaptic potentials. Stimulation of primary afferent fibers by electrical shock of the antennal nerve causes a characteristic IPSP-EPSP synaptic response in AL projection neurons. The IPSP in projection neurons reverses below the resting potential, is sensitive to changes in external and internal chloride concentration, and thus is apparently mediated by an increase in chloride conductance. The IPSP is reversibly blocked by 100 microM picrotoxin or bicuculline. Many AL neurons respond to application of GABA with a strong hyperpolarization and an inhibition of spontaneous spiking activity. GABA responses are associated with an increase in neuronal input conductance and a reversal potential below the resting potential. Application of GABA blocks inhibitory synaptic inputs and reduces or blocks excitatory inputs. EPSPs can be protected from depression by application of GABA. Muscimol, a GABA analog that mimics GABA responses at GABAA receptors but not at GABAB receptors in the vertebrate CNS, inhibits many AL neurons in the moth.  相似文献   

10.
Insects use information about CO2 to perform vital tasks such as locating food sources. In certain moths, CO2 is involved in oviposition behavior. The labial palps of adult moths that feed as adults have a pit organ containing sensory receptor cells that project into the antennal lobes, the sites of primary processing of olfactory information in the brain. In the moth Manduca sexta and certain other species of Lepidoptera, these receptor cells in the labial-palp pit organ have been shown to be tuned to CO2, and their axons project to a single, identified glomerulus in the antennal lobe, the labial-palp pit organ glomerulus. At present, however, nothing is known about the function of this glomerulus or how CO2 information is processed centrally. We used intracellular recording and staining to reveal projection (output) neurons in the antennal lobes that respond to CO2 and innervate the labial-palp pit organ glomerulus. Our results demonstrate that this glomerulus is the site of first-order processing of sensory information about ambient CO2. We found three functional types of CO2-responsive neurons (with their cell bodies in the antennal lobe or the protocerebrum) that provide output from the antennal lobe to higher centers in the brain. Some physiological characteristics of those neurons are described.Abbreviations AL Antennal lobe - AN Antennal nerve - CMB Calyces of the mushroom body - IPSP Inhibitory postsynaptic potential - LC-I Dorsal cluster of the lateral group of AL neuronal somata - LH Lateral horn of the protocerebrum - LPN Labial-palp nerve - LPO Labial-palp pit organ - LPOG LPO glomerulus - PC Protocerebrum - PI AL neuron that projects to the PC through the inner antenno-cerebral tract - PN Projection neuron  相似文献   

11.
The cochlear nucleus (CN) presents a unique opportunity for quantitatively studying input-output transformations by neurons because it gives rise to a variety of different response types from a relatively homogeneous input source, the auditory nerve (AN). Particularly interesting among CN neurons are Onset (On) neurons, which have a prominent response to the onset of sustained sounds followed by little or no response in the steady-state. On neurons contrast sharply with their AN inputs, which respond vigorously throughout stimuli. On neurons can entrain to stimuli (firing once per cycle of a periodic stimulus) at up to 1000 Hz, unlike their AN inputs. To understand the mechanisms underlying these response patterns, we tested whether an integrate-to-threshold point-neuron model with a fixed refractory period can account for On discharge patterns for tones, systematically examining the effect of membrane time constant and the number and strength of the exclusively excitatory AN synaptic inputs. To produce both onset responses to high-frequency tone bursts and entrainment to a broad range of low-frequency tones, the model must have a short time constant (0.125 ms) and a large number (>100) of weak synaptic inputs, properties that are consistent with the electrical properties and anatomy of On-responding cells. With these parameters, the model acts like a coincidence detector with a threshold-like relationship between the instantaneous discharge rates of the output and the inputs. Onset responses to high-frequency tone bursts result because the threshold effect enhances the initial response of the AN inputs and suppresses their relatively lower sustained response. However, when the model entrains across a broad range of frequencies, it also produces short interspike intervals at the onset of high-frequency tone bursts, a response pattern not found in all types of On neurons. These results show a tradeoff, that may be a general property of many neurons, between following rapid stimulus fluctuations and responding without short interspike intervals at the onset of sustained stimuli.  相似文献   

12.
Discharges of the olfactory units in the brain of the honey-bee were recorded extracellularly. Discharges were excitatory and inhibitory and showed on and on-off responses. In the on responses, phasic, phasic-tonic, and tonic patterns were found. No relation between discharge pattern and the region in the brain was found. The dominant pattern was phasic-tonic in the excitatory and tonic in the inhibitory units. Rebound or long-lasting phenomena seemed to be one of the characteristics of the neurones in the central nervous system.The latency of the response showed that olfactory information entering the deutocerebrum from the antenna was carried to the calyx of the ipsilateral brain via the antenno-cerebral tracts reported by Kenyon (1896), and then to the protocerebral lobe through the stalk of the mushroom body. The information was also carried to the contralateral brain after passing through the calyx of the ipsilateral brain or the central commissure.  相似文献   

13.
Interneurons with dendritic branches in the antennal lobe of the male turnip moth, Agrotis segetum (Schiff., Lepidoptera: Noctuidae), were investigated with intracellular recording and staining methods. Seventeen projection neurons that transmit information from the antennal lobe to higher centers in the brain displayed dendritic arbors in the male specific macroglomerular complex (MGC) and responded to chemical components of the female sex pheromone used in species-specific sexual communication. Most of the projection neurons responded to several of the pheromone components tested, and a precise correlation between the location of the dendritic arborization and the physiological response could not be demonstrated. One MGC-projection neuron fit the definition of blend specialist. It did not respond to the individual components of the behaviorally active pheromone blend, but showed a strong response to the components when combined in the species-specific blend. Some of the projection neurons also showed clear responses to phenylacetaldehyde, a flower-produced compound and/or to (E)-2-hexenal, a common green-leaf volatile. In eight neurons, the axonal projection could be followed to the calyces of the mushroom body, and subsequently to the inferior lateral protocerebrum.Four local interneurons were characterized both morphologically and physiologically. Each neuron arborized extensively throughout the antennal lobe, and each responded to one or several of the pheromone compounds, and/or to one or both of the plant-produced compounds. One of the local interneurons responded exclusively to the pheromone blend, but not to the individual components.Abbreviations AL antennal lobe - AN antennal nerve - CB cell body - E2H (E)-2-hexenal - IACT inner antennocerebral tract - ILPR inferior lateral protocerebrum - LH lateral horn of the protocerebrum - LN local interneuron - MB mushroom body - MGC macroglomerular complex - OACT outer antennocerebral tract - PAA phenylacetaldehyde - PN projection interneuron - RN receptor neuron - Z5-10:OAc (Z)-5-decenyl acetate - Z5-10:OH (Z)-5-decenol - Z5-12:OAc (Z)-5-dodecenyl acetate - Z7-12:OAc (Z)-7-dodecenyl acetate - Z9-14:OAc (Z)-9-tetradecenyl acetate  相似文献   

14.
Intensity versus identity coding in an olfactory system   总被引:11,自引:0,他引:11  
Stopfer M  Jayaraman V  Laurent G 《Neuron》2003,39(6):991-1004
We examined the encoding and decoding of odor identity and intensity by neurons in the antennal lobe and the mushroom body, first and second relays, respectively, of the locust olfactory system. Increased odor concentration led to changes in the firing patterns of individual antennal lobe projection neurons (PNs), similar to those caused by changes in odor identity, thus potentially confounding representations for identity and concentration. However, when these time-varying responses were examined across many PNs, concentration-specific patterns clustered by identity, resolving the apparent confound. This is because PN ensemble representations changed relatively continuously over a range of concentrations of each odorant. The PNs' targets in the mushroom body-Kenyon cells (KCs)-had sparse identity-specific responses with diverse degrees of concentration invariance. The tuning of KCs to identity and concentration and the patterning of their responses are consistent with piecewise decoding of their PN inputs over oscillation-cycle length epochs.  相似文献   

15.
Physiology and morphology of olfactory neurons associated with the protocerebral lobe around the alpha-lobe of the mushroom body were studied in the brain of the honeybee Apis mellifera using intracellular recording and staining techniques. The responses of neurons to behaviorally relevant odorants (a blend, and components of the Nasonov pheromone, and some other non-pheromonal odors) were recorded. Different response patterns were observed within different neurons, and often within the same neuron, in response to different stimuli. All the neurons stained had innervations in the protocerebral lobe. The cell profiles varied from cells connecting the antennal lobe with both the protocerebral and lateral protocerebral lobes (projection neurons), cells linking the pedunculus of the mushroom body with both the protocerebral and lateral protocerebral lobes (PE1 neurons), cells linking the alpha-lobe and protocerebral lobe with the calyces of the mushroom body (feedback neurons), and cells linking the alpha-lobe and protocerebral lobe with the antennal lobe (recurrent neurons), to cells connecting the protocerebral lobe with the contralateral protocerebrum (bilateral neurons). These findings suggest that the protocerebral lobe acts as an olfactory center associating with other centers, and provides multi-layered recurrent networks within the protocerebrum and between the deutocerebrum and the protocerebrum in honeybee olfactory pathways.  相似文献   

16.
W M Getz  A Lutz 《Chemical senses》1999,24(4):351-372
A central problem in olfaction is understanding how the quality of olfactory stimuli is encoded in the insect antennal lobe (or in the analogously structured vertebrate olfactory bulb) for perceptual processing in the mushroom bodies of the insect protocerebrum (or in the vertebrate olfactory cortex). In the study reported here, a relatively simple neural network model, inspired by our current knowledge of the insect antennal lobes, is used to investigate how each of several features and elements of the network, such as synapse strengths, feedback circuits and the steepness of neural activation functions, influences the formation of an olfactory code in neurons that project from the antennal lobes to the mushroom bodies (or from mitral cells to olfactory cortex). An optimal code in these projection neurons (PNs) should minimize potential errors by the mushroom bodies in misidentifying the quality of an odor across a range of concentrations while maximizing the ability of the mushroom bodies to resolve odors of different quality. Simulation studies demonstrate that the network is able to produce codes independent or virtually independent of concentration over a given range. The extent of this range is moderately dependent on a parameter that characterizes how long it takes for the voltage in an activated neuron to decay back to its resting potential, strongly dependent on the strength of excitatory feedback by the PNs onto antennal lobe intrinsic neurons (INs), and overwhelmingly dependent on the slope of the activation function that transforms the voltage of depolarized neurons into the rate at which spikes are produced. Although the code in the PNs is degraded by large variations in the concentration of odor stimuli, good performance levels are maintained when the complexity of stimuli, as measured by the number of component odorants, is doubled. When excitatory feedback from the PNs to the INs is strong, the activity in the PNs undergoes transitions from initial states to stimulus-specific equilibrium states that are maintained once the stimulus is removed. When this PN-IN feedback is weak the PNs are more likely to relax back to a stimulus-independent equilibrium state, in which case the code is not maintained beyond the application of the stimulus. Thus, for the architecture simulated here, strong feedback from the PNs onto the INs, together with step-like neuronal activation functions, could well be important in producing easily discriminable odor quality codes that are invariant over several orders of magnitude in stimulus concentration.  相似文献   

17.
Olfactory receptor neurons present in two morphological sensillum types on the male Schistocerca gregaria antenna were for the first time investigated physiologically when stimulated with behaviourally relevant odours. Neurons present in trichoid/basiconic sensilla showed clear excitatory responses to compounds present in the male-produced aggregation pheromone and also to a plant produced compound. Sensilla could be categorised physiologically according to the responses of their receptor neurons to the tested stimuli. Also receptor neurons present in sensilla coeloconica responded to aggregation pheromone components, but always in an inhibitory fashion. These neurons could, however, be excited by a plant produced compound and by some acids present in the nymphal odour. The antennal lobe of the male S. gregaria was observed to contain about 1000 very small glomerular structures. Single receptor neurons were stained from the antenna to the antennal lobe using a cobalt lysine technique. These stainings revealed a multi glomerular axonal branching pattern of antennal receptor neurons.Abbreviations AN antennal nerve - AL antennal lobe - RN receptor neuron  相似文献   

18.
1. To elucidate the neural mechanisms that mediate visual responses of optic tectum (OT) to medullary and spinal motor systems, we analyzed medullary reticular neurons in paralyzed Japanese toads (Bufo japonicus). We examined their responses to electrical stimulation of OT, and stained some neurons intracellularly. Responses to stimulation of the glossopharyngeal nerve (IX) were also analyzed. 2. Extracellular single unit recording revealed excitatory responses of medullary neurons to OT and IX stimulation. Among 92 units encountered, 79 responded to OT stimuli, 10 to IX stimuli, and 3 to both. Some units responded to successive stimuli of short intervals with relatively stable lags. 3. Intracellular recording and staining experiments revealed morphologies of reticular neurons that received excitatory inputs from OT. Thirteen units were identified after complete reconstruction of somata and dendrites. Neurons in the nucleus reticularis medius received excitatory inputs from bilateral OT. They had wide dendrites in ventral, ventrolateral and lateral funiculi, and single axons descending in the ipsilateral ventral funiculus as far caudally as the cervical spinal cord. Some collaterals of these axons projected directly to the hypoglossal and spinal motor nuclei. Some neurons in other medullary nuclei (nuc. reticularis superior, pretrigeminal nucleus, nuc. reticularis inferior, and nuc. tractus spinalis nervi trigemini) also responded to the OT stimulation. 4. Activities in bilateral OT converge onto medullary reticular neurons, which may directly control medullary and spinal motor systems.  相似文献   

19.
Summary Receptor cell axons from the antennal flagellum terminate in the glomeruli of the ipsilateral deutocerebrum in Periplaneta americana and Locusta migratoria. Processes from several groups of deutocerebral neurons also enter the glomeruli and terminate in characteristic branching patterns. There, they contact the antennal axons. Connections are both convergent and divergent. Not only do single central neurons collect the inputs from many receptor cells, but receptor axons were often observed to branch and terminate at more than one deutocerebral neuron. The axons from a portion of the neurons go to form the deutocerebral bundle of the tractus olfactorioglobularis. These axons of the bundle terminate in the ipsilateral calyx of the corpus pedunculatum and in the lateral lobus protocerebri. The processes of the majority of the deutocerebral neurons stay within the deutocerebrum itself and may serve as local interneurons. Part of some antennal fibers terminate in the lobus dorsalis. The lobus glomeratus receives inputs from the maxillary palps and also from processes of deutocerebral neurons.Electron microscopy of synaptic connections and anatomical experiments reveal a complicated pattern of connections between receptor axons and higher order neurons as well as between higher order neurons themselves within the glomeruli.The ratio of the number of antennal fibers to that of relay fibers could easily lead to the interpretation, that the deutocerebrum merely serves as a device for reducing the number of transmission channels. However, coupled with physiological data, anatomical details such as conand divergence of input and interconnections between input channels suggest rather a filtering system and a highly complicated integrative network.  相似文献   

20.
Bats, like other mammals, are known to use interaural intensity differences (IID) to determine azimuthal position. In the lateral superior olive (LSO) neurons have firing behaviors which vary systematically with IID. Those neurons receive excitatory inputs from the ipsilateral ear and inhibitory inputs from the contralateral one. The IID sensitivity of a LSO neuron is thought to be due to delay differences between the signals coming from both ears, differences due to different synaptic delays and to intensity-dependent delays. In this paper we model the auditory pathway until the LSO. We propose a learning scheme where inputs to LSO neurons start out numerous with different relative delays. Spike timing-dependent plasticity (STDP) is then used to prune those connections. We compare the pruned neuron responses with physiological data and analyse the relationship between IID’s of teacher stimuli and IID sensitivities of trained LSO neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号