首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Vertebrate development relies on the regulated translation of stored maternal mRNAs, but how these regulatory mechanisms may have evolved to control translational efficiency of individual mRNAs is poorly understood. We compared the translational regulation and polyadenylation of the cyclin B1 mRNA during zebrafish and Xenopus oocyte maturation. Polyadenylation and translational activation of cyclin B1 mRNA is well characterized during Xenopus oocyte maturation. Specifically, Xenopus cyclin B1 mRNA is polyadenylated and translationally activated during oocyte maturation by proteins that recognize the conserved AAUAAA hexanucleotide and U-rich Cytoplasmic Polyadenylation Elements (CPEs) within cyclin B1 mRNA's 3'UnTranslated Region (3'UTR).  相似文献   

2.
Translational control during early development   总被引:17,自引:0,他引:17  
Early development in many animals is programmed by maternally inherited messenger RNAs. Many of these mRNAs are translationally dormant in immature oocytes, but are recruited onto polysomes during meiotic maturation, fertilization, or early embryogenesis. In contrast, other mRNAs that are translated in oocytes are released from polysomes during these later stages of development. Recent studies have begun to define the cis and trans elements that regulate both translational repression and translational induction of maternal mRNA. The inhibition of translation of some mRNAs during early development is controlled by discrete sequences residing in the 3' and 5' untranslated regions, respectively. The translation of other RNAs is due to polyadenylation which, at least in oocytes of the frog Xenopus laevis, is regulated by a U-rich cytoplasmic polyadenylation element (CPE). Although similar, the CPE sequences of various mRNAs are sufficiently different to be bound by different proteins. Two of these proteins and their interactions are described here.  相似文献   

3.
During Xenopus early development, the length of the poly(A) tail of maternal mRNAs is a key element of translational control. Several sequence elements (cytoplasmic polyadenylation elements) localized in 3' untranslated regions have been shown to be responsible for the cytoplasmic polyadenylation of certain maternal mRNAs. Here, we demonstrate that the mRNA encoding the catalytic subunit of phosphatase 2A is polyadenylated after fertilization of Xenopus eggs. This polyadenylation is mediated by the additive effects of two cis elements, one being similar to already described cytoplasmic polyadenylation elements and the other consisting of a polycytosine motif. Finally, a candidate specificity factor for polycytosine-mediated cytoplasmic polyadenylation has been purified and identified as the Xenopus homologue of human alpha-CP2.  相似文献   

4.
Hu J  Lutz CS  Wilusz J  Tian B 《RNA (New York, N.Y.)》2005,11(10):1485-1493
Polyadenylation is an essential step for the maturation of almost all cellular mRNAs in eukaryotes. In human cells, most poly(A) sites are flanked by the upstream AAUAAA hexamer or a close variant, and downstream U/GU-rich elements. In yeast and plants, additional cis elements have been found to be located upstream of the poly(A) site, including UGUA, UAUA, and U-rich elements. In this study, we have developed a computer program named PROBE (Polyadenylation-Related Oligonucleotide Bidimensional Enrichment) to identify cis elements that may play regulatory roles in mRNA polyadenylation. By comparing human genomic sequences surrounding frequently used poly(A) sites with those surrounding less frequently used ones, we found that cis elements occurring in yeast and plants also exist in human poly(A) regions, including the upstream U-rich elements, and UAUA and UGUA elements. In addition, several novel elements were found to be associated with human poly(A) sites, including several G-rich elements. Thus, we suggest that many cis elements are evolutionarily conserved among eukaryotes, and human poly(A) sites have an additional set of cis elements that may be involved in the regulation of mRNA polyadenylation.  相似文献   

5.
Richter JD 《Cell》2008,132(3):335-337
The translation of many maternal mRNAs is regulated by dynamic changes in poly(A) tail length. During maturation of Xenopus oocytes, polyadenylation is mediated by three different cis elements in the 3' untranslated region (UTR) of maternal mRNAs. In this issue, Piqué et al. (2008) explore the interplay of these elements to elucidate a combinatorial code that predicts the timing of polyadenylation and translation of maternal mRNAs.  相似文献   

6.
7.
Cytoplasmic poly(A) elongation is one mechanism that regulates translational recruitment of maternal mRNA in early development. In Xenopus laevis, poly(A) elongation is controlled by two cis elements in the 3' untranslated regions of responsive mRNAs: the hexanucleotide AAUAAA and a U-rich structure with the general sequence UUUUUAAU, which is referred to as the cytoplasmic polyadenylation element (CPE). B4 RNA, which contains these sequences, is polyadenylated during oocyte maturation and maintains a poly(A) tail in early embryos. However, cdk2 RNA, which also contains these sequences, is polyadenylated during maturation but deadenylated after fertilization. This suggests that cis-acting elements in cdk2 RNA signal the removal of the poly(A) tail at this time. By using poly(A) RNA-injected eggs, we showed that two elements which reside 5' of the CPE and 3' of the hexanucleotide act synergistically to promote embryonic deadenylation of this RNA. When an identical RNA lacking a poly(A) tail was injected, these sequences also prevented poly(A) addition. When fused to CAT RNA, the cdk2 3' untranslated region, which contains these elements, as well as the CPE and the hexanucleotide, promoted poly(A) addition and enhanced chloramphenicol acetyltransferase activity during maturation, as well as repression of these events after fertilization. Incubation of fertilized eggs with cycloheximide prevented the embryonic inhibition of cdk2 RNA polyadenylation but did not affect the robust polyadenylation of B4 RNA. This suggests that a maternal mRNA, whose translation occurs only after fertilization, is necessary for the cdk2 deadenylation or inhibition of RNA polyadenylation. This was further suggested when poly(A)+ RNA isolated from two-cell embryos was injected into oocytes that were then allowed to mature. Such oocytes became deficient for cdk2 RNA polyadenylation but remained proficient for B4 RNA polyadenylation. These data show that CPE function is developmentally regulated by multiple sequences and factors.  相似文献   

8.
9.
Production of the two mRNAs encoding distinct forms of 2'-5'-oligoadenylate synthetase depends on processing that involves the recognition of alternative poly(A) sites and an internal 5'-splice site located within the first 3'-terminal exon. The resulting 1.6- and 1.8-kb mRNAs are expressed in fibroblast cell lines, whereas lymphoblastoid B cells, such as Daudi, produce only the 1.8-kb mRNA. In the present study, we have shown that the 3'-end processing at the last 3'-terminal exon occurs independently of the core poly(A) site sequence or the presence of regulatory elements. In contrast, in Daudi cells, the recognition of the poly(A) site at the first 3'-terminal exon is impaired because of an unfavorable sequence context. The 3'-end processing at this particular location requires a strong stabilization of the cleavage/polyadenylation factors, which can be achieved by the insertion of a 25-nucleotide long U-rich motif identified upstream of the last poly(A) site. Consequently, we speculate that in cells expressing the 1.6-kb mRNA, such as fibroblasts, direct or indirect participation of a specific mechanism or cell type-specific factors are required for an efficient polyadenylation at the first 3'-terminal exon.  相似文献   

10.
We have identified and characterized one of the most strongly-expressed genes of cowpox virus (CPV). This is the gene encoding the major protein component of the A-type inclusion bodies produced by this virus. This gene (designated the 160K gene) is transcribed late during the infection. Analyses of its mRNAs showed that these late RNAs, unlike all other characterized late mRNAs of poxviruses, are uniform in length. However, the most remarkable feature of the mRNAs of the 160K gene is the structure of their 5'-termini. Most of these mRNAs have 5'-terminal poly(A) sequences containing 5-21 residues. Furthermore, these 5'-terminal poly(A) sequences are not complementary to the corresponding region of the template strand of the viral DNA. Instead, the nucleotide sequences of the mRNA and the viral DNA diverge at the site of the three As in the sequence 5'-TAAATG-3' containing the gene's initiation codon. Consequently, the poly(A) provides the leader sequences of these mRNAs. These unusual 5'-terminal structures suggest that the late mRNAs of pox-virus genes are generated by a novel process.  相似文献   

11.
12.
Meiotic cell cycle progression during vertebrate oocyte maturation requires the correct temporal translation of maternal mRNAs encoding key regulatory proteins. The mechanism by which specific mRNAs are temporally activated is unknown, although both cytoplasmic polyadenylation elements (CPE) within the 3'-untranslated region (3'-UTR) of mRNAs and the CPE-binding protein (CPEB) have been implicated. We report that in progesterone-stimulated Xenopus oocytes, the early cytoplasmic polyadenylation and translational activation of multiple maternal mRNAs occur in a CPE- and CPEB-independent manner. We demonstrate that polyadenylation response elements, originally identified in the 3'-UTR of the mRNA encoding the Mos proto-oncogene, direct CPE- and CPEB-independent polyadenylation of an early class of Xenopus maternal mRNAs. Our findings refute the hypothesis that CPE sequences alone account for the range of temporal inductions of maternal mRNAs observed during Xenopus oocyte maturation. Rather, our data indicate that the sequential action of distinct 3'-UTR-directed translational control mechanisms coordinates the complex temporal patterns and extent of protein synthesis during vertebrate meiotic cell cycle progression.  相似文献   

13.
14.
15.
Regulation of mRNA turnover is a critical control mechanism of gene expression and is influenced by ribonucleoprotein (RNP) complexes that form on cis elements. All mRNAs have an intrinsic half-life and in many cases these half-lives can be altered by a variety of stimuli that are manifested through the formation or disruption of an RNP structure. The stability of alpha-globin mRNA is determined by elements in the 3' untranslated region that are bound by an RNP complex (alpha-complex) which appears to control the erythroid-specific accumulation of alpha-globin mRNA. The alpha-complex could consist of up to six distinct proteins or protein families. One of these families is a prominent polycytidylate binding activity which consists of two highly homologous proteins, alpha-complex proteins 1 and 2 (alphaCP1 and alphaCP2). This article focuses on various methodologies for the detection and manipulation of alphaCP1 and alphaCP2 binding to RNA and details means of isolating and characterizing mRNA bound by these proteins to study mRNA turnover and its regulation.  相似文献   

16.
During ascidian embryogenesis, some mRNAs show clear localization at the posterior-most region. These postplasmic mRNAs are divided into two groups (type I and type II) according to their pattern of localization. To elucidate how these localization patterns are achieved, we attempted to identify the localization elements of these mRNAs. When in vitro synthesized postplasmic mRNAs were introduced into eggs, these mRNAs showed posterior localization similar to the endogenous mRNAs. The posterior localization of these mRNAs was mediated by their 3' untranslated regions (3' UTRs), as is the case for several localized Drosophila and Xenopus mRNAs. We identified smaller fragments of the 3' UTRs of HrWnt-5 and HrPOPK-1 mRNAs (type I) and HrPet-3 mRNA (type II) that were sufficient to direct green fluorescent protein mRNA to the posterior pole. For the localization of HrWnt-5 mRNA, two UG dinucleotide repetitive elements were essential. Motifs similar to these small elements also exist within the HrPOPK-1 mRNA localization element and 3' UTR of HrZF-1 mRNA, suggesting the conservation of localization elements among type I mRNAs. In contrast, the smallest sequence that suffices for the posterior localization of HrPet-3 (a type II mRNA) has different features from those of type I mRNAs; indeed, it does not have an identifiable critical element. This difference may distinguish type II mRNAs from type I mRNAs. These findings, especially the identification of the small localization element of HrWnt-5 mRNA, provide new insights into the localization of mRNAs during ascidian embryogenesis.  相似文献   

17.
Cao Q  Richter JD 《The EMBO journal》2002,21(14):3852-3862
Cytoplasmic polyadenylation stimulates the translation of several dormant mRNAs during oocyte maturation in XENOPUS: Polyadenylation is regulated by the cytoplasmic polyadenylation element (CPE), a cis-acting element in the 3'-untranslated region of responding mRNAs, and its associated factor CPEB. CPEB also binds maskin, a protein that in turn interacts with eIF4E, the cap-binding factor. Here, we report that based on antibody and mRNA reporter injection assays, maskin prevents oocyte maturation and the translation of the CPE-containing cyclin B1 mRNA by blocking the association of eIF4G with eIF4E. Dissociation of the maskin-eIF4E complex is essential for cyclin B1 mRNA translational activation, and requires not only cytoplasmic polyadenylation, but also the poly(A)-binding protein. These results suggest a molecular mechanism by which CPE- containing mRNA is activated in early development.  相似文献   

18.
Cytoplasmic polyadenylation controls the translation of several maternal mRNAs during Xenopus oocyte maturation and requires two sequences in the 3' untranslated region (UTR), the U-rich cytoplasmic polyadenylation element (CPE), and the hexanucleotide AAUAAA. c-mos mRNA is polyadenylated and translated soon after the induction of maturation, and this protein kinase is necessary for a kinase cascade culminating in cdc2 kinase (MPF) activation. Other mRNAs are polyadenylated later, around the time of cdc2 kinase activation. To determine whether there is a hierarchy in the cytoplasmic polyadenylation of maternal mRNAs, we ablated c-mos mRNA with an antisense oligonucleotide. This prevented histone B4 and cyclin A1 and B1 mRNA polyadenylation, indicating that the polyadenylation of these mRNAs is Mos dependent. To investigate a possible role of cdc2 kinase in this process, cyclin B was injected into oocytes lacking c-mos mRNA. cdc2 kinase was activated, but mitogen-activated protein kinase was not. However, polyadenylation of cyclin B1 and histone B4 mRNA was still observed. This demonstrates that cdc2 kinase can induce cytoplasmic polyadenylation in the absence of Mos. Our data further indicate that although phosphorylation of the CPE binding protein may be involved in the induction of Mos-dependent polyadenylation, it is not required for Mos-independent polyadenylation. We characterized the elements conferring Mos dependence (Mos response elements) in the histone B4 and cyclin B1 mRNAs by mutational analysis. For histone B4 mRNA, the Mos response elements were in the coding region or 5' UTR. For cyclin B1 mRNA, the main Mos response element was a CPE that overlaps with the AAUAAA hexanucleotide. This indicates that the position of the CPE can have a profound influence on the timing of cytoplasmic polyadenylation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号