首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Can better prescribing turn the tide of resistance?   总被引:2,自引:0,他引:2  
  相似文献   

2.
3.
Can complexity be commercialized?   总被引:2,自引:0,他引:2  
Mack GS 《Nature biotechnology》2004,22(10):1223-1229
  相似文献   

4.
Hypotheses for explaining plant invasions have focused on a variety of factors that may influence invasion success, including propagule pressure, interactions of the introduced species with the biotic, abiotic, or disturbance properties of the new ecosystem, or the genetic characteristics of the invader itself. Evaluating the relative importance of these factors has been difficult because for most invaders key information about the introduced population or the introduction event is not available. We propose that natural experiments using model species is an important tool to test multiple invasion hypotheses at the same time, providing a complementary approach to meta-analysis and literature review. By focusing on a single candidate species, Pinus contorta, we explore several attributes that we propose constitute a good model, including: (a) intentional and relatively well documented introduction into a wide range of environments and countries across the world during the past century, where invasion success or failure has already occurred, (b) conspicuous growth form that simplifies assessment of growth rates, and comparisons across native and introduced ecosystems around the world, and, (c) documented and replicated variability of introduction intensity, genetic characteristics of the introduced populations, contrasting biotic communities present at sites of introduction, and abiotic conditions within and across introduced ecosystems. We propose that identifying model species with these characteristics will provide opportunities to disentangle the relative importance of different mechanisms hypothesized to influence invasion success, and thereby advance the field of invasion ecology.  相似文献   

5.
What counters antibiotic resistance in nature?   总被引:1,自引:0,他引:1  
  相似文献   

6.
As recognized by several international agencies, antibiotic resistance is nowadays one of the most relevant problems for human health. While this problem was alleviated with the introduction of new antibiotics into the market in the golden age of antimicrobial discovery, nowadays few antibiotics are in the pipeline. Under these circumstances, a deep understanding on the mechanisms of emergence, evolution and transmission of antibiotic resistance, as well as on the consequences for the bacterial physiology of acquiring resistance is needed to implement novel strategies, beyond the development of new antibiotics or the restriction in the use of current ones, to more efficiently treat infections. There are still several aspects in the field of antibiotic resistance that are not fully understood. In the current article, we make a non-exhaustive critical review of some of them that we consider of special relevance, in the aim of presenting a snapshot of the studies that still need to be done to tackle antibiotic resistance.  相似文献   

7.
8.
Mauricio R 《Genetica》2005,123(1-2):205-209
Ecologists study the rules that govern processes influencing the distribution and abundance of organisms, particularly with respect to the interactions of organisms with their biotic and abiotic environments. Over the past decades, using a combination of sophisticated mathematical models and rigorous experiments, ecologists have made considerable progress in understanding the complex web of interactions that constitute an ecosystem. The field of genomics runs on a path parallel to ecology. Like ecology, genomicists seek to understand how each gene in the genome interacts with every other gene and how each gene interacts with multiple, environmental factors. Gene networks connect genes as complex as the webs that connect the species in an ecosystem. In fact, genes exist in an ecosystem we call the genome. The genome as ecosystem is more than a metaphor – it serves as the conceptual foundation for an interdisciplinary approach to the study of complex systems characteristic of both genomics and ecology. Through the infusion of genomics into ecology and ecology into genomics both fields will gain fresh insight into the outstanding major questions of their disciplines.  相似文献   

9.
Molecular techniques have had a profound impact in biology. Major disciplines, including evolutionary biology, now consistently utilize molecular tools. In contrast, molecular techniques have had a more limited impact in ecology. This discrepancy is surprising. Here, we describe the unexpected paucity of ecological research in the field colloquially referred to as 'molecular ecology.' Publications over the past 15 years from the journals Ecology , Evolution and Molecular Ecology reveal that much of the research published under the molecular ecology banner is in fact evolutionary in nature, and that comparatively little ecological research incorporates molecular tools. This failure to more broadly utilize molecular techniques in ecology is alarming because several promising lines of ecological inquiry could benefit from molecular approaches. Here we summarize the use of molecular tools in ecology and evolution, and suggest several ways to renew the ecological focus in 'molecular ecology'.  相似文献   

10.
Can plant biochemistry contribute to understanding of invasion ecology?   总被引:2,自引:0,他引:2  
Ecologists have long searched for an explanation as to why some plant invaders become much more dominant in their naturalized range than in their native range, and, accordingly, several non-exclusive ecological hypotheses have been proposed. Recently, a biochemical explanation was proposed--the "novel weapons hypothesis"--based on findings that Centaurea diffusa and Centaurea maculosa produce bioactive compounds (weapons) that are more active against na?ve plant species in the introduced range than against co-evolved species in the native range. In this Opinion article, we revise and expand this biochemical hypothesis and discuss experimental and conceptual advances and limitations.  相似文献   

11.
The concepts of adaptive/fitness landscapes and adaptive peaks are a central part of much of contemporary evolutionary biology; the concepts are introduced in introductory texts, developed in more detail in graduate-level treatments, and are used extensively in papers published in the major journals in the field. The appeal of visualizing the process of evolution in terms of the movement of populations on such landscapes is very strong; as one becomes familiar with the metaphor, one often develops the feeling that it is possible to gain deep insights into evolution by thinking about the movement of populations on landscapes consisting of adaptive valleys and peaks. But, since Wright first introduced the metaphor in 1932, the metaphor has been the subject of persistent confusion, from equivocation over just what the features of the landscape are meant to represent to how we ought to expect the landscapes to look. Recent advances—conceptual, empirical, and computational—have pointed towards the inadequacy and indeed incoherence of the landscapes as usually pictured. I argue that attempts to reform the metaphor are misguided; it is time to give up the pictorial metaphor of the landscape entirely and rely instead on the results of formal modeling, however difficult such results are to understand in ‘intuitive’ terms.
Jonathan KaplanEmail:
  相似文献   

12.
Antimicrobial resistance is an emerging public-health threat. Studies of the relationship between antibiotic use and resistance, as well as surveillance programmes, examine changes in the proportion of isolates that are resistant. Although proportions are helpful to the clinician prescribing empirical therapy, proportion-based analyses can be misleading to the public-health professional as they can yield biased estimates. Proportions do not adequately reflect the burden of resistance, a measure often of interest in public health. A more appropriate measure of this burden is the rate of isolation of resistant organisms, that is, the absolute number of resistant isolates in a population over time.  相似文献   

13.
A key parameter influencing the rate and trajectory of the evolution of antibiotic resistance is the fitness cost of resistance. Recent studies have demonstrated that antibiotic resistance, whether caused by target alteration or by other mechanisms, generally confers a reduction in fitness expressed as reduced growth, virulence or transmission. These findings imply that resistance might be reversible, provided antibiotic use is reduced. However, several processes act to stabilize resistance, including compensatory evolution where the fitness cost is ameliorated by additional mutation without loss of resistance, the rare occurrence of cost-free resistance mechanisms and genetic linkage or co-selection between the resistance markers and other selected markers. Conceivably we can use this knowledge to rationally choose and design targets and drugs where the costs of resistance are the highest, and where the likelihood of compensation is the lowest.  相似文献   

14.
Results of in vitro studies conducted on isolated bone specimens have indicated a higher tolerance to static load than exists when exposed to cyclic loading, when controlled for creep rate. If this difference in load tolerance exists, it may be exploited to extend the life of vertebral bone exposed to repetitive compression, and potentially alter the development of spinal injury. However, little work has been conducted on functional spinal units to determine if bone displays this characteristic within an intact joint. Additionally, static loading may result in load redistribution within the intervertebral disc forcing more of the compressive load towards the periphery of the endplate away from the nucleus. In order to examine these potential mechanisms, 218 osteoligamentous porcine functional spinal units were assigned to one of 15 loading scenarios. This involved one of three normalized peak load magnitudes (50%, 70% and 90% of estimated compressive tolerance) and one of five normalized static load applications (0%, 50%, 100%, 200% and 1000% of the total dynamic work duration). Load magnitude significantly altered the resistance to cumulative compression with decreased peak magnitudes corresponding to both increased cumulative load tolerance and increased height loss. Static load periods did not alter the resistance of the spinal unit to cumulative compression or impact the number of cycles tolerated to failure. The insertion of static load periods impacted the total survival time to failure, but only for the 1000% static load group, an exposure unlikely to occur for most in vivo exposures. The insertion of static load periods decreased the amount of height loss during testing which may play a protective role by allowing load redistribution within the vertebral bone and intervertebral disc.  相似文献   

15.
16.
17.
Stanley P 《Cell》2007,129(1):27-29
Cell-surface glycoprotein receptors have varying numbers of N-glycan sites. In this issue of Cell, Lau et al. (2007) report that increasing intracellular UDP-GlcNAc leads to increased branching of N-glycans, increased receptor association with cell-surface galectin-3, and enhanced signaling. They also show that the kinetics of this response differ between growth-promoting receptors, which have 8-16 N-glycans, and those that induce growth arrest, which have very few N-glycans, suggesting that hexosamine flux may regulate the transition from growth to arrest.  相似文献   

18.
Are network motifs the spandrels of cellular complexity?   总被引:1,自引:0,他引:1  
Cellular networks display modular organization at different levels, from small sets of genes exchanging signals in morphogenesis to large groups of proteins involved in cell death. At the smallest scale, minute groups of interacting proteins or genes, so-called 'network motifs', have been suggested to be the functional building blocks of network biology. In this context, the relative abundance of a network motif would reflect its adaptive value. However, although the overabundance of motifs is non-random, recent studies by Mazurie et al. and by Kuo et al. show that motif abundance does not reflect their true adaptive value. Just as some architectural components emerge as a byproduct of a prior decision, common motifs might be a side effect of inevitable rules of genome growth and change.  相似文献   

19.
The discussion of the adaptive landscape in the philosophical literature appears to be divided along the following lines. On the one hand, some claim that the adaptive landscape is either “uninterpretable” or incoherent. On the other hand, some argue that the adaptive landscape has been an important heuristic, or tool in the service of explaining, as well as proposing and testing hypotheses about evolutionary change. This paper attempts to reconcile these two views.
Anya PlutynskiEmail:
  相似文献   

20.
Enterococci, which are on the WHO list of priority pathogens, are commonly encountered in hospital acquired infection and are becoming increasing significant due to the development of strains resistant to multiple antibiotics. Enterococci are also important microorganisms in the environment, and their presence is frequently used as an indicator of faecal pollution. Their success is related to their ability to survive within a broad range of habitats and the ease by which they acquire mobile genetic elements, including plasmids, from other bacteria. The enterococci are frequently present within a bacterial biofilm, which provides stability and protection to the bacterial population along with an opportunity for a variety of bacterial interactions. Enterococci can accept extrachromosomal DNA both from within its own species and from other bacterial species, and this is enhanced by the proximity of the donor and recipient strains. It is this exchange of genetic material that makes the role of biofilms such an important aspect of the success of enterococci. There remain many questions regarding the most suitable model systems to study enterococci in biofilms and regarding the transfer of genetic material including antibiotic resistance in these biofilms. This review focuses on some important aspects of biofilm in the context of horizontal gene transfer (HGT) in enterococci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号