首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Over the past two decades, RNA catalysis has become a major topic of research. On the one hand, naturally occurring ribozymes have been extensively investigated concerning their structure and functional mechanisms. On the other hand, the knowledge gained from these studies has been used to engineer ribozyme variants with novel properties. In addition to RNA engineering by means of rational design, powerful techniques for selection of ribozymes from large pools of random sequences were developed and have been widely used for the generation of functional nucleic acids. RNA as catalyst has been accompanied by DNA, and nowadays a large number of ribozymes and deoxyribozymes are available. The field of ribozyme generation and selection has been extensively reviewed. With respect to the field of biotechnology, RNA and DNA catalysts working on peptides or proteins, or which are designed to control protein synthesis, are of utmost importance and interest. Therefore, in this review, we will focus on engineered nucleic acid catalysts for peptide synthesis and modification as well as for intracellular control of gene expression.  相似文献   

3.
4.

Background  

Manufacturing large quantities of recombinant RNAs by overexpression in a bacterial host is hampered by their instability in intracellular environment. To overcome this problem, an RNA of interest can be fused into a stable bacterial RNA for the resulting chimeric construct to accumulate in the cytoplasm to a sufficiently high level. Being supplemented with cost-effective procedures for isolation of the chimera from cells and recovery of the recombinant RNA from stabilizing scaffold, this strategy might become a viable alternative to the existing methods of chemical or enzymatic RNA synthesis.  相似文献   

5.
6.
Oligonucleotides (ONs) are gaining increasing importance as a promising novel class of biopharmaceuticals. Thanks to their fundamental role in gene regulation, they can be used to develop custom‐made drugs (also called N‐to‐1) able to act on the gene expression at pre‐translational level. With recent approvals of ON‐based therapeutics by the Food and Drug Administration (FDA), a growing demand for high‐quality chemically modified ONs is emerging and their market is expected to impressively prosper in the near future. To satisfy this growing market demand, a scalable and economically sustainable ON production is needed. In this paper, the state of the art of the whole ON production process is illustrated with the aim of highlighting the most promising routes toward the auspicated market‐size production. In particular, the most recent advancements in both the upstream stage, mainly based on solid‐phase synthesis and recombinant technology, and the downstream one, focusing on chromatographic techniques, are reviewed. Since ON production is projected to expand to the large scale, automatized multicolumn countercurrent technologies will reasonably be required soon to replace the current ones based on batch single‐column operations. This consideration is supported by a recent cutting‐edge application of continuous chromatography for the ON purification.  相似文献   

7.
8.
Metabolic engineering has been defined as the purposeful modification of intermediary metabolism using recombinant DNA techniques. With this definition metabolic engineering includes: (1) inserting new pathways in microorganisms with the aim of producing novel metabolites, e.g., production of polyketides by Streptomyces; (2) production of heterologous peptides, e.g., production of human insulin, erythropoitin, and tPA; and (3) improvement of both new and existing processes, e.g., production of antibiotics and industrial enzymes. Metabolic engineering is a multidisciplinary approach, which involves input from chemical engineers, molecular biologists, biochemists, physiologists, and analytical chemists. Obviously, molecular biology is central in the production of novel products, as well as in the improvement of existing processes. However, in the latter case, input from other disciplines is pivotal in order to target the genetic modifications; with the rapid developments in molecular biology, progress in the field is likely to be limited by procedures to identify the optimal genetic changes. Identification of the optimal genetic changes often requires a meticulous mapping of the cellular metabolism at different operating conditions, and the application of metabolic engineering to process optimization is, therefore, expected mainly to have an impact on the improvement of processes where yield, productivity, and titer are important design factors, i.e., in the production of metabolites and industrial enzymes. Despite the prospect of obtaining major improvement through metabolic engineering, this approach is, however, not expected to completely replace the classical approach to strain improvement-random mutagenesis followed by screening. Identification of the optimal genetic changes for improvement of a given process requires analysis of the underlying mechanisms, at best, at the molecular level. To reveal these mechanisms a number of different techniques may be applied: (1) detailed physiological studies, (2) metabolic flux analysis (MFA), (3) metabolic control analysis (MCA), (4) thermodynamic analysis of pathways, and (5) kinetic modeling. In this article, these different techniques are discussed and their applications to the analysis of different processes are illustrated.  相似文献   

9.
The production of recombinant proteins in the microbial host Escherichia coli often results in the formation of cytoplasmic protein inclusion bodies (IBs). Proteins forming IBs are often branded as difficult-to-express, neglecting that IBs can be an opportunity for their production. IBs are resistant to proteolytic degradation and contain up to 90% pure recombinant protein, which does not interfere with the host metabolism. This is especially advantageous for host-toxic proteins like antimicrobial peptides (AMPs). IBs can be easily isolated by cell disruption followed by filtration and/or centrifugation, but conventional techniques for the recovery of soluble proteins from IBs are laborious. New approaches therefore simplify protein recovery by optimizing the production process conditions, and often include mild resolubilization methods that either increase the yield after refolding or avoid the necessity of refolding all together. For the AMP production, the IB-based approach is ideal, because these peptides often have simple structures and are easy to refold. The intentional IB production of almost every protein can be achieved by fusing recombinant proteins to pull-down tags. This review discusses the techniques available for IB-based protein production before considering technical approaches for the isolation of IBs from E. coli lysates followed by efficient protein resolubilization which ideally omits further refolding. The techniques are evaluated in terms of their suitability for the process-scale production and downstream processing of recombinant proteins and are discussed for AMP production as an example.  相似文献   

10.
11.
Procedures are presented by which whole cell, cytoplasmic, or nuclear extracts can be subjected to gel electrophoresis for the separation of the various RNA species, which are then analyzed by conventional blotting and hybridization techniques. Since the methods for preparing the extracts do not involve precipitation or two-phase extraction steps, the minimum number of cells that can be processed is limited only by the sensitivity of detection for specific RNA species. Multiple small or large aliquots of tissue culture cells can be quickly prepared. Cell preparations with high RNase levels, such as resting human lymphocytes or HL60, can be processed reliably with these procedures.  相似文献   

12.
New tools for the genetic manipulation of filamentous fungi   总被引:1,自引:0,他引:1  
Filamentous fungi have a long-standing tradition as industrial producers of primary and secondary metabolites. Initially, industrial scientists selected production strains from natural isolates that fulfilled both microbiological and technical requirements for economical production processes. Subsequently, genetically modified strains with novel properties were obtained through traditional strain improvement programs relying mostly on random mutagenesis. In recent years, however, recombinant technologies have contributed significantly to improve the capacities of production and have also allowed the design of genetically manipulated strains. These major advances were only made possible by basic research bringing deeper and novel insights into cellular and molecular fungal processes, thus allowing the design of genetically manipulated strains. This better understanding of fundamental genetic processes in model organisms has resulted in the design and generation of new experimental transformation strategies to manipulate specifically gene expression and function in diverse filamentous fungi, including those having a biotechnical significance. In this review, we summarize recent developments in the application of homologous DNA recombination and RNA interference to manipulate fungal recipients for further improvement of physiology and development in regards to biotechnical and pharmaceutical applications.  相似文献   

13.
Antibody molecular farming in plants and plant cells   总被引:1,自引:0,他引:1  
`Molecular Farming' is a novel approach to the production of pharmaceuticals, where valuable recombinant proteins can be produced in transgenic organisms on an agricultural scale. Plants have been traditionally used as a source of medicines, but the use of transgenic plants in molecular farming represents a novel source of molecular medicines that include plasma proteins, enzymes, growth factors, vaccines and recombinant antibodies. Until recently, the wide use of these molecular medicines was limited because of the difficulty in producing these proteins outside animals or animal cell cultures. The application of molecular biology and plant biotechnology in the 1990s showed that many molecular medicines could be synthesised in plants. The goal of this Molecular Farming technology is to produce pharmaceuticals that are safer, easier to produce and less expensive than those produced in animals or microbial cultures. Here, we examine the production of recombinant antibodies by Molecular Farming.  相似文献   

14.
Shaking bioreactors are the most frequently used reactor system for screening and process optimization on a small scale. Their success can be attributed to their simple and functional design, which make shaking systems suitable for a large number of cost-efficient parallel experiments. Recently reported findings for oxygen transfer, power input, out-of-phase operation, hydromechanical stress and mixing in shaken bioreactors are summarized in this article. Novel monitoring techniques for the control of culture conditions in shake flasks and microtiter plates are described. The methods for characterizing culture conditions and the novel online measurement techniques that are summarized in this article can be utilized to tap the full potential of shaking reactor systems.  相似文献   

15.
Chapman T  Davies SJ 《Peptides》2004,25(9):1477-1490
The study of insect seminal fluid proteins provides a unique window upon adaptive evolution in action. The seminal fluid of Drosophila melanogaster contains over 80 proteins and peptides, which are transferred together with sperm by mating males. The functions of many of these substances are not yet known. However, those that have been characterized have marked effects on the reproductive success of males and females. For example, seminal fluid proteins and peptides can decrease female receptivity, can increase egg production and can increase sperm storage, and are necessary for sperm transfer and success in sperm competition. In this review we focus on the currently known functions of seminal fluid molecules and on new technologies and approaches that are enabling novel questions about their form and function to be addressed. We discuss how techniques for disrupting the production of seminal fluid proteins, such as homologous recombination and RNA interference, along with the use of microarrays and yeast two hybrid systems, should allow us to address ever more sophisticated questions about seminal fluid protein function. These and similar techniques promise to reveal the function of naturally-occurring variants of these proteins and hence the evolutionary significance of genetic variation for them.  相似文献   

16.
Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNA-enzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct. Such a construct is typically subject to several criteria. First, single-molecule force spectroscopy techniques often require an RNA construct that is longer than the RNA molecules used for bulk biochemical studies. Next, the incorporation of modified nucleotides into the RNA construct is required for its surface immobilization. In addition, RNA constructs for single-molecule studies are commonly assembled from different single-stranded RNA molecules, demanding good control of hybridization or ligation. Finally, precautions to prevent RNase- and divalent cation-dependent RNA digestion must be taken. The rather limited selection of molecular biology tools adapted to the manipulation of RNA molecules, as well as the sensitivity of RNA to degradation, make RNA construct preparation a challenging task. We briefly illustrate the types of single-molecule force spectroscopy experiments that can be performed on RNA, and then present an overview of the toolkit of molecular biology techniques at one's disposal for the assembly of such RNA constructs. Within this context, we evaluate the molecular biology protocols in terms of their effectiveness in producing long and stable RNA constructs.  相似文献   

17.
在以病毒载体介导的基因治疗研究中,重组腺相关病毒(rAAV)因其疗效和安全性方面的优势,是最有临床应用前景的载体。但其转基因包装容量一般不能超过5.0kb,给需要转导大片段基因的应用带来了困难,限制了rAAV在基因治疗研究中的应用。随着对rAAV细胞转导生物学过程研究的不断深入,发现了一些可以突破rAAV包装容量限制的技术,如反式剪接和同源重组策略,为拓展该载体应用范围提供了可能性。另外,rAAV包装容量限制的特点还可以被用来减少生产过程中具有可复制能力的类病毒杂质的污染,为rAAV的临床安全性提供了保障。  相似文献   

18.
The initial focus of recombinant protein production by filamentous fungi related to exploiting the extraordinary extracellular enzyme synthesis and secretion machinery of industrial strains, including Aspergillus, Trichoderma, Penicillium and Rhizopus species, was to produce single recombinant protein products. An early recognized disadvantage of filamentous fungi as hosts of recombinant proteins was their common ability to produce homologous proteases which could degrade the heterologous protein product and strategies to prevent proteolysis have met with some limited success. It was also recognized that the protein glycosylation patterns in filamentous fungi and in mammals were quite different, such that filamentous fungi are likely not to be the most suitable microbial hosts for production of recombinant human glycoproteins for therapeutic use. By combining the experience gained from production of single recombinant proteins with new scientific information being generated through genomics and proteomics research, biotechnologists are now poised to extend the biomanufacturing capabilities of recombinant filamentous fungi by enabling them to express genes encoding multiple proteins, including, for example, new biosynthetic pathways for production of new primary or secondary metabolites. It is recognized that filamentous fungi, most species of which have not yet been isolated, represent an enormously diverse source of novel biosynthetic pathways, and that the natural fungal host harboring a valuable biosynthesis pathway may often not be the most suitable organism for biomanufacture purposes. Hence it is expected that substantial effort will be directed to transforming other fungal hosts, non-fungal microbial hosts and indeed non microbial hosts to express some of these novel biosynthetic pathways. But future applications of recombinant expression of proteins will not be confined to biomanufacturing. Opportunities to exploit recombinant technology to unravel the causes of the deleterious impacts of fungi, for example as human, mammalian and plant pathogens, and then to bring forward solutions, is expected to represent a very important future focus of fungal recombinant protein technology.  相似文献   

19.
20.
Bacillus megaterium, the "big beast," is a Gram-positive bacterium with a size of 4 × 1.5 μm. During the last years, it became more and more popular in the field of biotechnology for its recombinant protein production capacity. For the purpose of intra- as well as extracellular protein synthesis several vectors were constructed and commercialized (MoBiTec GmbH, Germany). On the basis of two compatible vectors, a T7 RNA polymerase driven protein production system was established. Vectors for chromosomal integration enable the direct manipulation of the genome. The vitamin B(12) biosynthesis of B. megaterium served as a model for the systematic development of a production strain using these tools. For this purpose, the overexpression of chromosomal and plasmid encoded genes and operons, the synthesis of anti-sense RNA for gene silencing, the removal of inhibitory regulatory elements in combination with the utilization of strong promoters, directed protein design, and the recombinant production of B(12) binding proteins to overcome feedback inhibition were successfully employed. For further system biotechnology based optimization strategies the genome sequence will provide a closer look into genomic capacities of B. megaterium. DNA arrays are available. Proteome, fluxome and metabolome analyses are possible. All data can be integrated by using a novel bioinformatics platform. Finally, the size of the "big beast" B. megaterium invites for cell biology research projects. All these features provide a solid basis for challenging biotechnological approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号