首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel preparative HPLC method separating silybin has been developed to meet the need for both silybin A and silybin B standard. After the preparation of silybin A and silybin B standard, a simple, sensitive, selective and reproducible liquid chromatography-tandem mass spectrometry (LC-MS-MS) method with negative electrospray ionization (ESI) was developed for the quantification of silybin A and silybin B in human plasma. Following rapid sample preparation, silybin A, silybin B and naringin (internal standard, ISTD) were separated on a Zorbax Eclipse XDB-C18 column, using methanol-water containing 0.1% formic acid (48:52, v/v) as the mobile phase. The mass spectrometer was operated in selected reaction monitoring (SRM) mode using the transition m/z 481.1-->300.9 for both silybin A and silybin B and m/z 579.2-->271.1 for naringin, respectively. Linear calibration curves were obtained in the concentration range of 2-5000ng/ml with a lower limit of quantitation (LLOQ) of 2ng/ml for both silybin A and silybin B, respectively. The intra- and inter-day precision values were below 7.5% and accuracy was within +/-4.9% at all three quality control (QC) levels, for both silybin A and silybin B, respectively. This method was successfully applied to the stereospecific analysis of silybin in plasma samples from a pharmacokinetic study of silybin A and silybin B in 22 healthy male Chinese volunteers after a single oral dose of silybin-phosphatidylcholine complex (equivalent to 280mg silybin, including 133mg silybin A and 147mg silybin B).  相似文献   

2.
Four beta-glycosides of flavonoligan silybin, i.e. silybin beta-galactoside, silybin beta-glucoside, silybin beta-maltoside, silybin beta-lactoside were synthesized in order to improve silybin water solubility and bioavailability (Kren et al., J Chem Soc, Perkin Trans 1, 2467-2474, 1997). The presented paper deals with the effect of silybin and its synthetic beta-glycosides on the expression of two major cytochrome P450 isoforms, CYP1A2 and CYP3A4. Primary cultures of human hepatocytes were the model of choice. mRNAs were analyzed using Northern blot and P-radiolabelled probes. CYP protein content was determined by immunoblotting using specific antibodies. Silybin and its beta-glycosides do not induce expression of CYP1A2 and CYP3A4. Tested compounds did not affect inducible expression of CYP1A2 and CYP3A4 by dioxin and rifampicin, respectively, as evaluated at the level of mRNAs and proteins. Silybin and its beta-glycosides do not interfere with the expression of CYP1A2 and CYP3A4, are not likely to produce drug-drug interactions in terms of the inducibility of two important cytochromes P450.  相似文献   

3.
Microbial transformation of silybin by Trichoderma koningii   总被引:1,自引:0,他引:1  
Microbial transformation of silybin A (1) and silybin B (2), the major hepatoprotective flavonolignan diastereomers from the fruits of Silybum marianum, with the culture broth of Trichoderma koningii gave two pairs of glucosylated derivatives. Their structures were identified as silybin A 3-O-beta-D-glucopyranoside (3), silybin A 7-O-beta-D-glucopyranoside (4), silybin B 3-O-beta-D-glucopyranoside (5) and silybin B 7-O-beta-D-glucopyranoside (6) by spectroscopic methods.  相似文献   

4.
Silybin is a composition of the silymarin group as a hepatoprotective agent, and it exhibits various biological activities, including an antibacterial activity. In this study, the effects of a combination of silybin with N,N'-dicyclohexylcarbodiimide (DCCD) against clinical isolates of Pseudomonas aeruginosa were investigated. In the results of susceptibility assay, silybin showed more potent antibacterial activity in methicilin-resistant Staphylococcus aureus (MRSA) than in P. aeruginosa, but DCCD significantly increased the antibacterial activity of silybin in P. aeruginosa. The antibacterial activity of silybin was affected by the strong action of multidrug-resistant pumps rather than by a permeable disruption of lipopolysaccharide and silybin showed a remarkable synergistic activity in combination with some antibiotic agents against drug-resistant bacteria. Therefore, silybin has a potential as a combination therapeutic agent for treatment of infectious diseases by multidrug-resistant bacteria.  相似文献   

5.
《Process Biochemistry》2010,45(10):1657-1663
The flavonolignan silybin (1), isolated from the seeds of milk thistle (Silybum marianum), occurs in nature as an equimolar mixture of two diastereoisomers, silybin A and silybin B, that exhibit different biological activities. The preparative production of optically pure silybin A and B in a diastereoisomeric purity greater than 95% was accomplished using immobilized Candida antarctica lipase B (Novozym 435) in a combination of two reactions: regioselective acetylation of a natural silybin mixture (1) and subsequent stereoselective alcoholysis of the resulting 23-O-acetylsilybin (2). Several grams of the optically pure substances can be produced within one week using this new, robust and scalable process, which is selective, mild and high-yielding.  相似文献   

6.
Silybin or silibinin, a flavonolignan isolated from Milk thistle seeds, is one of the popular dietary supplements and has been extensively studied for its antioxidant, hepatoprotective and anti-cancer properties. We have envisioned that potency of silybin could be further enhanced through suitable modification/s in its chemical structure. Accordingly, here, we synthesized and characterized a series of silybin derivatives namely 2,3-dehydrosilybin (DHS), 7-O-methylsilybin (7OM), 7-O-galloylsilybin (7OG), 7,23-disulphatesilybin (DSS), 7-O-palmitoylsilybin (7OP), and 23-O-palmitoylsilybin (23OP); and compared their anti-cancer efficacy using human bladder cancer HTB9, colon cancer HCT116 and prostate carcinoma PC3 cells. In all the 3 cell lines, DHS, 7OM and 7OG demonstrated better growth inhibitory effects and compared to silybin, while other silybin derivatives showed lesser or no efficacy. Next, we prepared the optical isomers (A and B) of silybin, DHS, 7OM and 7OG, and compared their anti-cancer efficacy. Isomers of these three silybin derivatives also showed better efficacy compared with respective silybin isomers, but in each, there was no clear cut silybin A versus B isomer activity preference. Further studies in HTB cells found that DHS, 7OM and 7OG exert better apoptotic activity than silibinin. Clonogenic assays in HTB9 cells further confirmed that both the racemic mixtures as well as pure optical isomers of DHS, 7OM and 7OG were more effective than silybin. Overall, these results clearly suggest that the anti-cancer efficacy of silybin could be significantly enhanced through structural modifications, and identify strong anti-cancer efficacy of silybin derivatives, namely DHS, 7OM, and 7OG, signifying that their efficacy and toxicity should be evaluated in relevant pre-clinical cancer models in rodents.  相似文献   

7.
Carboxylic acids derived from silybin (1) and 2,3-dehydrosilybin (2) with improved water solubility were prepared by selective oxidation of parent compounds and a new inexpensive method for preparation of 2,3-dehydrosilybin from silybin was developed and optimised. The antioxidative properties of the above-mentioned compounds and of side product 3a from oxidation of compound 1 were determined by cyclic voltammetry, free radical scavenging (DPPH, superoxide) assays, and by inhibition of in vitro generated liver microsomal lipid peroxidation. Dehydrogenation at C((2))-C((3)) in flavonolignans (silybin vs 2,3-dehydrosilybin; silybinic acid vs 2,3-dehydrosilybinic acid) strongly improved antioxidative properties (analogously as in flavonoids taxifolin vs quercetin). Thus, in antioxidative properties, dehydrosilybin was superior to silybin by one order, but its water solubility is too low for application in aqueous milieu. On the other hand, 2,3-dehydrosilybinic acid is a fairly soluble derivative with antilipoperoxidation and antiradical activities better than that of silybin.  相似文献   

8.
Aryl sulfotransferase IV (AstIV) from rat liver was overexpressed in Escherichia coli and purified to homogeneity. Using the produced mammalian liver enzyme, sulfation—the Phase II conjugation reaction—of optically pure silybin diastereoisomers (silybin A and B) was tested. As a result, silybin B was sulfated yielding 20-O-silybin B sulfate, whereas silybin A was completely resistant to the sulfation reaction. Milligram-scale sulfation of silybin B was optimized employing resting E. coli cells producing AstIV, thus avoiding the use of expensive 3′-phosphoadenosine-5′-phosphate cofactor and laborious enzyme purification. Using this approach, we were able to reach 48 % conversion of silybin B into its 20-sulfate within 24 h. The sulfated product was isolated by solid phase extraction and its structure was characterized by HRMS and NMR. Sulfation reaction of silybin appeared strictly stereoselective; only silybin B was sulfated by AstIV.  相似文献   

9.
Silybin is the major flavonolignan of silymarin and it displays a plethora of biological effects, generally ascribed to its antioxidant properties. Herein we shall describe an efficient synthetic strategy to obtain a variety of new and more water-soluble silybin and 2,3-dehydrosilybin (DHS) derivatives in which the 23-hydroxyl group was converted to a sulfate, phosphodiester, or amine group, using a solution-phase approach. Furthermore a new and efficient method for the preparation of DHS from silybin was developed and optimised.The antioxidant properties of the new compounds were evaluated in a cellular model in vivo and they displayed an antioxidant activity comparable to or higher than silybin and DHS, being able to prevent H2O2-induced generation of intracellular reactive oxygen species (ROS). Most of the derivatives also displayed a better hydrophilicity while retaining the biological activities of silybin and they might broaden the in vivo applications of this class of natural compounds.  相似文献   

10.
This article aims to review critically literature published mainly within this millennium on the new and emerging applications of silymarin, the polyphenolic fraction from the seeds of Silybum marianum and its main component silybin. Silymarin and silybin used so far mostly as hepatoprotectants were shown to have other interesting activities as e.g., anticancer and canceroprotective. These activities were demonstrated in a large variety of illnesses of different organs as e.g., prostate, lungs, CNS, kidneys, pancreas and others. Besides the cytoprotective activity of silybin mediated by its antioxidative and radical-scavenging properties also new activities based on the specific receptor interaction were discovered--e.g., inhibition and modulation of drug transporters, P-glycoproteins, estrogenic receptors, nuclear receptors and some others. New derivatives of silybin open new ways to its therapeutic applications. Pharmacology dealing with optically pure silybin diastereomers may suggest new mechanisms of its action.  相似文献   

11.
Introduction – Silybin, a standardised extract of flavanolignans from the seeds of Silybum marianum, has been used for centuries as a natural remedy in the treatment of hepatitis and cirrhosis. The higher yield of silybin by using more efficient extraction technique is of particular interest in the herbal products manufacture. Objective – To systematically investigate the important factors of enzyme‐assisted extraction of flavanolignans from the seeds of Silybum marianum to enhance the extraction yield of silybin. Methodology – The important factors of enzyme‐assisted extraction were optimised by employing Box–Behnken design with the aid of the orthogonal array design (OAD) OA8 (27). The effects of enzyme incubation temperature (EIT), the pH of enzyme solution (PES) and the size of seeds (SS) on the yield of silybin were visualised as three‐dimensional response surface and contour plots. Results – The predictive yield was 24.6 mg/g defatted seeds under the optimum enzymolysis conditions (EIT 40°C, PES 4.5 and SS 7003 μm). The coefficient of the model was r2 > 0.97 (n = 15). The actual yield of silybin was 24.81 ± 1.93 mg/g defatted seeds, higher by 138 and 123.6% than that from ethanol extraction in this study and in the previous literature, respectively. IR spectra and HPLC of the extracts by EAE were in agreement with those from ethanol extraction. SEM and TEM pictures of defatted seeds by variant extractions demonstrate that the extraction of silybin depends on the destruction of cell walls. Conclusion – The results suggest that EAE is a promising alternative for the extraction of silybin by the use of traditional ethanol extraction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Flavonolignans from milk thistle (Silybum marianum) have been investigated for their cellular modulatory properties, including cancer chemoprevention and hepatoprotection, as an extract (silymarin), as partially purified mixtures (silibinin and isosilibinin), and as pure compounds (a series of seven isomers). One challenge with the use of these compounds in vivo is their relatively short half-life due to conjugation, particularly glucuronidation. In an attempt to generate analogues with improved in vivo properties, particularly reduced metabolic liability, a semi-synthetic series was prepared in which the hydroxy groups of silybin B were alkylated. A total of five methylated analogues of silybin B were synthesized using standard alkylation conditions (dimethyl sulfate and potassium carbonate in acetone), purified using preparative HPLC, and elucidated via spectroscopy and spectrometry. Of the five, one was monomethylated (3), one was dimethylated (4), two were trimethylated (2 and 6), and one was tetramethylated (5). The relative potency of all compounds was determined in a 72 h growth-inhibition assay against a panel of three prostate cancer cell lines (DU-145, PC-3, and LNCaP) and a human hepatoma cell line (Huh7.5.1) and compared to natural silybin B. Compounds also were evaluated for inhibition of both cytochrome P450 2C9 (CYP2C9) activity in human liver microsomes and hepatitis C virus infection in Huh7.5.1 cells. The monomethyl and dimethyl analogues were shown to have enhanced activity in terms of cytotoxicity, CYP2C9 inhibitory potency, and antiviral activity (up to 6-fold increased potency) compared to the parent compound, silybin B. In total, these data suggested that methylation of flavonolignans can increase bioactivity.  相似文献   

13.
Silybin or silymarin extract has been used to treat liver diseases, and has now been entered into clinical trials for cancer treatment. Here, we compared antioxidant and anticancer activities between silybin and its oxidized form 2,3-dehydrosilybin (DHS). With IC50 at three-fold lower concentrations than silybin, DHS inhibited reactive oxygen species generation in glucose-glucose oxidase system and HepG2 cells. Compared with silybin, DHS elicited greater protection against H2O2-induced HepG2 cell death and galactosamine-induced liver injury in vivo. It is known that oxidants induce releases of metalloproteinases (MMP)-2,-9 which are responsible for invasive and metastasis potentials of transformed cells. DHS at 10 microM markedly inhibited MMP-2,-9 releases as well as invasiveness, while silybin at 90 microM had marginal effects. DHS but not silybin at 30 microM induced apoptosis and loss of mitochondrial membrane potentials. LD50 of DHS was five-fold lower than that of silybin. Our data suggest that DHS may be more useful therapeutically than silybin.  相似文献   

14.
Silymarin is a standardized extract from Silybum marianum seeds, known for its many skin benefits such as antioxidant, anti-inflammatory, and immunomodulatory properties. In this study, the potential of several microemulsion formulations for dermal delivery of silymarin was evaluated. The pseudo-ternary phase diagrams were constructed for the various microemulsion formulations which were prepared using glyceryl monooleate, oleic acid, ethyl oleate, or isopropyl myristate as the oily phase; a mixture of Tween 20®, Labrasol®, or Span 20® with HCO-40® (1:1 ratio) as surfactants; and Transcutol® as a cosurfactant. Oil-in-water microemulsions were selected to incorporate 2% w/w silymarin. After six heating–cooling cycles, physical appearances of all microemulsions were unchanged and no drug precipitation occurred. Chemical stability studies showed that microemulsion containing Labrasol® and isopropyl myristate stored at 40°C for 6 months showed the highest silybin remaining among others. The silybin remainings depended on the type of surfactant and were sequenced in the order of: Labrasol® > Tween 20® > Span 20®. In vitro release studies showed prolonged release for microemulsions when compared to silymarin solution. All release profiles showed the best fits with Higuchi kinetics. Non-occlusive in vitro skin permeation studies showed absence of transdermal delivery of silybin. The percentages of silybin in skin extracts were not significantly different among the different formulations (p > 0.05). Nevertheless, some silybin was detected in the receiver fluid when performing occlusive experiments. Microemulsions containing Labrasol® also were found to enhance silymarin solubility. Other drug delivery systems with occlusive effect could be further developed for dermal delivery of silymarin.Key words: dermal delivery, microemulsion, silybin, silymarin  相似文献   

15.
Silybin, is one imminent therapeutic for drug induced hepatotoxicity, human prostrate adenocarcinoma and other degenerative organ diseases. Recent evidences suggest that silybin influences gluconeogenesis pathways favorably and is beneficial in the treatment of type 1 and type 2 diabetes. The compound however is constrained due to solubility (0.4 mg/mL) and bioavailabilty limitations. Appropriate nanoparticle design for silybin in biocompatible polymers was thus proposed as a probable solution for therapeutic inadequacy. New surface engineered biopolymeric nanoparticles with high silybin encapsulation efficiency of 92.11% and zeta potential of +21 mV were designed. Both the pure compound and the nanoparticles were evaluated in vivo for the first time in experimental diabetic conditions. Animal health recovered substantially and the blood glucose levels came down to near normal values after 28 days treatment schedule with the engineered nanoparticles. Restoration from hyperglycemic damage condition was traced to serum insulin regeneration. Serum insulin recovered from the streptozotocin induced pancreatic damage levels of 0.17±0.01 µg/lit to 0.57±0.11 µg/lit after nanoparticle treatment. Significant reduction in glycated hemoglobin level, and restoration of liver glycogen content were some of the other interesting observations. Engineered silybin nanoparticle assisted recovery in diabetic conditions was reasoned due to improved silybin dissolution, passive transport in nanoscale, and restoration of antioxidant status.  相似文献   

16.
Zs Varga  L Ujhelyi  A Kiss  J Balla  A Czompa  S Antus 《Phytomedicine》2004,11(2-3):206-212
Mechanism of the action of silybin (1) and its derivatives (2-4), possessing different lipid solubility in PMA-stimulated neutrophils was evaluated. Silybin (1) inhibited the calcium, phosphatidylserine- and diacylglycerol-dependent protein kinase C translocation and the NADPH oxidase activity in PMA-stimulated neutrophils and resulted in decreased apoptosis. Furthermore, silybin (1) inhibited xanthine oxidase activity and hem-mediated oxidative degradation of low-density lipoprotein, as well. Its derivatives (2-4), possessing different lipid-solubility, affected all the studied parameters. The lipid solubility of silybin (1) was enhanced by methylation (5'7'4'trimethylsilybin: 2), whereas a decrease in lipid-solubility by acetylation of compound 2 (5',7,'4"-trimethylsilybin-acetate: 3) or all the hydroxyl groups of silybin (peracetyl-silybin: 4) attenuated the antioxidant capacity by decreasing the inhibition in PKC translocation and NADPH oxidase activation. All the derivatives of silybin (2-4) showed no inhibition in cell free systems; e.g. did not alter the xanthine oxidase activity and the hem-mediated oxidative degradation of LDL. In conclusion, the antioxidant activity of (1) might be due to its ability to inhibit PKC translocation and NADPH oxidase activation in PMA-stimulated neutrophils. The increase of lipid solubility of silybin (1) supports its penetration through cell membrane and enhances its inhibitory effects. This structural modification of (1) might have pharmacological consequences.  相似文献   

17.
Silybin, the major flavonoid of Silybum marianum, is widely used to treat liver diseases such as hepatocellular carcinoma and cirrhosis-associated insulin resistance. Research so far has focused on its anti-oxidant properties. Here, we demonstrate that silybin and its derivative dehydrosilybin inhibit glucose uptake in several model systems. Both flavonoids dose-dependently reduce basal and insulin-dependent glucose uptake of 3T3-L1 adipocytes, with dehydrosilybin showing significantly stronger inhibition. However, insulin signaling was not impaired, and immunofluorescence and subcellular fractionation showed that insulin-induced translocation of GLUT4 to the plasma membrane is also unchanged. Likewise, hexokinase activity was not affected suggesting that silybin and dehydrosilybin interfere directly with glucose transport across the PM. Expression of GLUT4 in CHO cells counteracted the inhibition of glucose uptake by both flavonoids. Moreover, treatment of CHO cells with silybin and dehydrosilybin reduced cell viability which was partially rescued by GLUT4 expression. Kinetic analysis revealed that silybin and dehydrosilybin inhibit GLUT4-mediated glucose transport in a competitive manner with K(i)=60 and 116 μM, respectively. We conclude that silybin and dehydrosilybin inhibit cellular glucose uptake by directly interacting with GLUT transporters. Glucose starvation offers a novel explanation for the anti-cancer effects of silybin.  相似文献   

18.
The only currently recommended treatment for nonalcoholic fatty liver disease (NAFLD) is lifestyle modification. Preliminary studies of silybin showed beneficial effects on liver function. Realsil (RA) comprises the silybin phytosome complex (silybin plus phosphatidylcholine) coformulated with vitamin E. We report on a multicenter, phase III, double-blind clinical trial to assess RA in patients with histologically documented NAFLD. Patients were randomized 1:1 to RA or placebo (P) orally twice daily for 12 months. Prespecified primary outcomes were improvement over time in clinical condition, normalization of liver enzyme plasma levels, and improvement of ultrasonographic liver steatosis, homeostatic model assessment (HOMA), and quality of life. Secondary outcomes were improvement in liver histologic score and/or decrease in NAFLD score without worsening of fibrosis and plasma changes in cytokines, ferritin, and liver fibrosis markers. We treated 179 patients with NAFLD; 36 were also HCV positive. Forty-one patients were prematurely withdrawn and 138 patients analyzed per protocol (69 per group). Baseline patient characteristics were generally well balanced between groups, except for steatosis, portal infiltration, and fibrosis. Adverse events (AEs) were generally transient and included diarrhea, dysgeusia, and pruritus; no serious AEs were recorded. Patients receiving RA but not P showed significant improvements in liver enzyme plasma levels, HOMA, and liver histology. Body mass index normalized in 15% of RA patients (2.1% with P). HCV-positive patients in the RA but not the P group showed improvements in fibrogenesis markers. This is the first study to systematically assess silybin in NAFLD patients. Treatment with RA but not P for 12 months was associated with improvement in liver enzymes, insulin resistance, and liver histology, without increases in body weight. These findings warrant further investigation.  相似文献   

19.
Flavonolignans silybin and isosilybin are major components of silymarin complex isolated from seeds of the milk thistle (Silybum marianum) featuring strong antioxidant and hepatoprotective effects, and also anticancer, chemoprotective, dermatoprotective and hypocholesterolemic activities. Natural silybin and isosilybin are mixtures of diastereoisomers: silybin/isosilybin A (1a, 1b) and silybin/isosilybin B (2a, 2b). The metabolism of these compounds is supposed to be strongly linked to Phase II of biotransformation and the respective conjugates are rapidly excreted in bile and urine. The aim of this study was to obtain optically pure sulfated metabolites of both silybins and isosilybins. Aryl-sulfate sulfotransferase (EC 2.8.2.22) from Desulfitobacterium hafniense was found to be a highly effective tool for the regiospecific enzymatic synthesis of silybin A-20-O-sulfate, silybin B-20-O-sulfate, isosilybin A-20-O-sulfate and isosilybin B-20-O-sulfate providing nearly quantitative yields and employing cheap p-nitrophenyl sulfate as sulfate donor. The isolated sulfated products will be used as authentic standards in metabolic studies of both silybins and isosilybins.  相似文献   

20.
The flavonolignan silybin and its derivative dehydrosilybin have been proposed as candidate UV-protective agents in skin care products. This study addressed the effect of silybin and dehydrosilybin on the activity of cytochrome P450 isoform CYP1A1 in human keratinocytes (HaCaT) and human hepatoma cells (HepG2). CYP1A1 catalytic activity was assessed as O-deethylation of 7-ethoxyresorufin using fluorescence detection. Silybin and dehydrosylibin inhibited basal and dioxin-inducible CYP1A1 catalytic activity in both cell lines used. The inhibitory effect of tested compounds was more pronounced in HaCaT cells than in HepG2 cells, and dehydrosilybin was a much stronger inhibitor than silybin. Analyses on CYP1A1 human recombinant protein yielded IC50 values of 22.9 ± 4.7 μmol/L and 0.43 ± 0.04 μmol/L for silybin and dehydrosilybin, respectively. Since CYP1A enzymes are some of the most prominent actors in the process of chemically induced carcinogenesis, the inhibitory activity of the flavonolignans tested against CYP1A1 favors their use as cytoprotective agents in terms of skin and hepatic metabolism. In addition, the capability of dehydrosilybin to inhibit CYP1A1 in submicromolar concentrations makes this compound a potential biological probe in CYP1A1 analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号