首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周辉  卢向阳  田云  黄成江 《遗传》2006,28(9):1180-1184
在噬菌体phi29中, 基因组DNA的包装需要由病毒基因组编码的pRNA参与, 6个pRNA分子通过由pRNA分子间相互作用形成的六聚体来启动DNA转运马达, 这个过程由ATP提供能量。RNA纳米技术将pRNA与siRNA、核酶、反义RNA等分子稳定结合, pRNA作为一种载体把它们准确运输到癌细胞和病毒感染细胞的作用靶点, 从而发挥它们各自的功能。作为一种非编码RNA, 对pRNA的深入研究将有助于我们了解生命起源问题, 并有着广阔的应用前景。  相似文献   

2.
Due to structural flexibility, RNase sensitivity, and serum instability, RNA nanoparticles with concrete shapes for in vivo application remain challenging to construct. Here we report the construction of 14 RNA nanoparticles with solid shapes for targeting cancers specifically. These RNA nanoparticles were resistant to RNase degradation, stable in serum for >36 h, and stable in vivo after systemic injection. By applying RNA nanotechnology and exemplifying with these 14 RNA nanoparticles, we have established the technology and developed “toolkits” utilizing a variety of principles to construct RNA architectures with diverse shapes and angles. The structure elements of phi29 motor pRNA were utilized for fabrication of dimers, twins, trimers, triplets, tetramers, quadruplets, pentamers, hexamers, heptamers, and other higher-order oligomers, as well as branched diverse architectures via hand-in-hand, foot-to-foot, and arm-on-arm interactions. These novel RNA nanostructures harbor resourceful functionalities for numerous applications in nanotechnology and medicine. It was found that all incorporated functional modules, such as siRNA, ribozymes, aptamers, and other functionalities, folded correctly and functioned independently within the nanoparticles. The incorporation of all functionalities was achieved prior, but not subsequent, to the assembly of the RNA nanoparticles, thus ensuring the production of homogeneous therapeutic nanoparticles. More importantly, upon systemic injection, these RNA nanoparticles targeted cancer exclusively in vivo without accumulation in normal organs and tissues. These findings open a new territory for cancer targeting and treatment. The versatility and diversity in structure and function derived from one biological RNA molecule implies immense potential concealed within the RNA nanotechnology field.  相似文献   

3.
Through a mechanism known as RNA interference (RNAi), small interfering RNA (siRNA) molecules can target complementary mRNA strands for degradation, thus specifically inhibiting gene expression. The ability of siRNAs to inhibit gene expression offers a mechanism that can be exploited for novel therapeutics. Indeed, over the past decade, at least 21 siRNA therapeutics have been developed for more than a dozen diseases, including various cancers, viruses, and genetic disorders. Like other biological drugs, RNAi-based therapeutics often require a delivery vehicle to transport them to the targeted cells. Thus, the clinical advancement of numerous siRNA drugs has relied on the development of siRNA carriers, including biodegradable nanoparticles, lipids, bacteria, and attenuated viruses. Most therapies permit systemic delivery of the siRNA drug, while others use ex vivo delivery by autologous cell therapy. Advancements in bioengineering and nanotechnology have led to improved control of delivery and release of some siRNA therapeutics. Likewise, progress in molecular biology has allowed for improved design of the siRNA molecules. Here, we provide an overview of siRNA therapeutics in clinical trials, including their clinical progress, the challenges they have encountered, and the future they hold in the treatment of human diseases.  相似文献   

4.
The field of RNA nanotechnology is rapidly emerging. RNA can be manipulated with the simplicity characteristic of DNA to produce nanoparticles with a diversity of quaternary structures by self-assembly. Additionally RNA is tremendously versatile in its function and some RNA molecules display catalytic activities much like proteins. Thus, RNA has the advantage of both worlds. However, the instability of RNA has made many scientists flinch away from RNA nanotechnology. Other concerns that have deterred the progress of RNA therapeutics include the induction of interferons, stimulation of cytokines, and activation of other immune systems, as well as short pharmacokinetic profiles in vivo. This review will provide some solutions and perspectives on the chemical and thermodynamic stability, in vivo half-life and biodistribution, yield and production cost, in vivo toxicity and side effect, specific delivery and targeting, as well as endosomal trapping and escape.  相似文献   

5.
The ability of packaging RNA (pRNA) from the phi29 DNA packaging motor to form nanoassemblies and nanostructures has been exploited for the development of the nascent field of RNA nanotechnology and subsequent applications in nanomedicine. For applications in nanomedicine, it is necessary to modify the pRNA structure for the conjugation of active molecules. We have investigated end-capped double-stranded DNA segments as reversible capture reagents for pRNA. These capture agents can be designed to allow the conjugation of any desired molecule for pRNA functionalization. The results of model studies presented in this report show that 5- to 7-nucleotide overhangs on a target RNA can provide efficient handles for the high-affinity association to capped double-stranded DNA.  相似文献   

6.
The packaging RNA (pRNA) found in phi29 bacteriophage is an essential component of a molecular motor that packages the phage''s DNA genome. The pRNA forms higher-order multimers by intermolecular “kissing” interactions between identical molecules. The phi29 pRNA is a proven building block for nanotechnology and a model to explore the rare phenomenon of naturally occurring RNA self-association. Although the self-association properties of the phi29 pRNA have been extensively studied and this pRNA is used in nanotechnology, the characteristics of phylogenetically related pRNAs with divergent sequences are comparatively underexplored. These diverse pRNAs may lend new insight into both the rules governing RNA self-association and for RNA engineering. Therefore, we used a combination of biochemical and biophysical methods to resolve ambiguities in the proposed secondary structures of pRNAs from M2, GA1, SF5, and B103 phage, and to discover that different naturally occurring pRNAs form multimers of different stoichiometry and thermostability. Indeed, the M2 pRNA formed multimers that were particularly thermostable and may be more useful than phi29 pRNA for many applications. To determine if diverse pRNA behaviors are conferred by different kissing loop sequences, we designed and tested chimeric RNAs based on our revised secondary structural models. We found that although the kissing loops are essential for self-association, the critical determinant of multimer stability and stoichiometry is likely the diverse three-way junctions found in these RNAs. Using known features of RNA three-way junctions and solved structures of phi29 pRNA''s junction, we propose a model for how different junctions affect self-association.  相似文献   

7.
RNA干扰是在细胞胞质中双链RNA(dsR-NA)介导的序列特异性mRNA的降解[1]。这个过程是由21~25个被称为小干扰RNA(si RNA)形成的dsRNA完成[2]。目前,这一技术已经广泛应用于研究基因的功能,病毒感染治疗等方面。但是,si RNA在体内容易降解,干扰作用持续的时间不长。新的研究表明枯  相似文献   

8.
L Qi  L Wu  S Zheng  Y Wang  H Fu  D Cui 《Biomacromolecules》2012,13(9):2723-2730
RNA interference is one of the most promising technologies for cancer therapeutics, while the development of a safe and effective small interfering RNA (siRNA) delivery system is still challenging. Here, amphipol polymer and protamine peptide were employed to modify magnetic nanoparticles to form cell-penetrating magnetic nanoparticles (CPMNs). The unique CPMN could efficiently deliver the eGFP siRNA intracellularly and silence the eGFP expression in cancer cells, which was verified by fluorescent imaging of cancer cells. Compared with lipofectamine and polyethyleneimine (PEI), CPMNs showed superior silencing efficiency and biocompatibility with minimum siRNA concentration as 5 nm in serum-containing medium. CPMN was proved to be an efficient siRNA delivery system, which will have great potential in applications as a universal transmembrane carrier for intracellular gene delivery and simultaneous MRI imaging.  相似文献   

9.
Shu D  Zhang H  Jin J  Guo P 《The EMBO journal》2007,26(2):527-537
Direct imaging or counting of RNA molecules has been difficult owing to its relatively low electron density for EM and insufficient resolution in AFM. Bacteriophage phi29 DNA-packaging motor is geared by a packaging RNA (pRNA) ring. Currently, whether the ring is a pentagon or hexagon is under fervent debate. We report here the assembly of a highly sensitive imaging system for direct counting of the copy number of pRNA within this 20-nm motor. Single fluorophore imaging clearly identified the quantized photobleaching steps from pRNA labeled with a single fluorophore and concluded its stoichiometry within the motor. Almost all of the motors contained six copies of pRNA before and during DNA translocation, identified by dual-color detection of the stalled intermediates of motors containing Cy3-pRNA and Cy5-DNA. The stalled motors were restarted to observe the motion of DNA packaging in real time. Heat-denaturation analysis confirmed that the stoichiometry of pRNA is the common multiple of 2 and 3. EM imaging of procapsid/pRNA complexes clearly revealed six ferritin particles that were conjugated to each pRNA ring.  相似文献   

10.
A highly efficient method for the inhibition of bacteriophage phi 29 assembly was developed with the use of mutant forms of the viral procapsid (or packaging) RNA (pRNA) indispensable for phi 29 DNA packaging. Phage phi 29 assembly was severely reduced in vitro in the presence of mutant pRNA and completely blocked in vivo when the host cell expressed mutant pRNA. Addition of 45% mutant pRNA resulted in a reduction of infectious virion production by 4 orders of magnitude, indicating that factors involved in viral assembly can be targets for efficient and specific antiviral treatment. The mechanism leading to the high efficiency of inhibition was attributed to two pivotal features. First, the pRNA contains two separate, essential functional domains, one for procapsid binding and the other for a DNA-packaging role other than procapsid binding. Mutation of the DNA-packaging domain resulted in a pRNA with no DNA-packaging activity but intact procapsid binding competence. Second, multiple copies of the pRNA were involved in the packaging of one genome. This higher-order dependence of pRNA in viral replication concomitantly resulted in its higher-order inhibitory effect. This finding suggested that the collective DNA-packaging activity of multiple copies of pRNA could be disrupted by the incorporation of perhaps an individual mutant pRNA into the group. Although this mutant pRNA could not be used for the inhibition of the replication of other viruses directly, the principle of using molecules with two functional domains and multiple-copy involvement as targets for antiviral agents could be applied to certain viral structural proteins, enzymes, and other factors or RNAs involved in the viral life cycle. This principle also implies a strategy for gene therapy, intracellular immunization, or construction of transgenic plants resistant to viral infection.  相似文献   

11.
Xiao F  Moll WD  Guo S  Guo P 《Nucleic acids research》2005,33(8):2640-2649
During assembly, bacterial virus phi29 utilizes a motor to insert genomic DNA into a preformed protein shell called the procapsid. The motor contains one twelve-subunit connector with a 3.6 nm central channel for DNA transportation, six viral-encoded RNA (packaging RNA or pRNA) and a protein, gp16, with unknown stoichiometry. Recent DNA-packaging models proposed that the 5-fold procapsid vertexes and 12-fold connector (or the hexameric pRNA ring) represented a symmetry mismatch enabling production of a force to drive a rotation motor to translocate and compress DNA. There was a discrepancy regarding the location of the foothold for the pRNA. One model [C. Chen and P. Guo (1997) J. Virol., 71, 3864–3871] suggested that the foothold for pRNA was the connector and that the pRNA–connector complex was part of the rotor. However, one other model suggested that the foothold for pRNA was the 5-fold vertex of the capsid protein and that pRNA was the stator. To elucidate the mechanism of phi29 DNA packaging, it is critical to confirm whether pRNA binds to the 5-fold vertex of the capsid protein or to the 12-fold symmetrical connector. Here, we used both purified connector and purified procapsid for binding studies with in vitro transcribed pRNA. Specific binding of pRNA to the connector in the procapsid was found by photoaffinity crosslinking. Removal of the N-terminal 14 amino acids of the gp10 protein by proteolytic cleavage resulted in undetectable binding of pRNA to either the connector or the procapsid, as investigated by agarose gel electrophoresis, SDS–PAGE, sucrose gradient sedimentation and N-terminal peptide sequencing. It is therefore concluded that pRNA bound to the 12-fold symmetrical connector to form a pRNA–connector complex and that the foothold for pRNA is the connector but not the capsid protein.  相似文献   

12.
Bacteriophage phi 29 is typical of double-stranded DNA viruses in that its genome is packaged into a preformed procapsid during viral assembly. An intriguing feature of phi 29 is the presence of a 120-base virus-encoded RNA (pRNA) that is indispensable for DNA packaging. Phylogenetic comparison of similar RNAs in numerous phages has revealed that the secondary structure of the pRNA is well conserved. Computer analysis predicts the presence of an extensive segment of helix with three single-base bulges generated by the pairing of the 5' and 3' ends. The desire to understand the role played by the pRNA in DNA packaging has led to a mutational analysis of the 5'-/3'-terminal region, which is believed to be important in DNA translocation. Deletion of 3 bases from the 3' end of the RNA, shortening the pRNA from 120 to 117 bases, was tolerated without loss of activity, but additional deletion of the base 117 resulted in 100-fold less activity, and a 115-base pRNA was virtually nonfunctional. Additionally, the three unpaired one-base bulges within the helical stretches of the paired proximate ends were nonessential for pRNA activity, as demonstrated by deletion of the bulge individually. An extensive series of helix disruptions by single- and multiple-base substitution almost invariably led to the loss of DNA packaging activity. Additional mutations that restored predicted base pairings rescued pRNA activity. This second site suppression confirmed that the 5'- and 3'-end region was paired and was indeed a helical stretch. The secondary structure was of greater importance than the primary sequence, with the exception of the requirement of an adenine at either the third or fourth position. The specific requirement of an adenine in phi 29 pRNA at this position, as well as conservation of this position in other phage pRNAs, implicates that this base may play a special role in either the DNA-packaging reaction or the maintenance of the pRNA tertiary structure.  相似文献   

13.
The bacteriophage phi29 DNA packaging motor, one of the strongest biological motors characterized to date, is geared by a packaging RNA (pRNA) ring. When assembled from three RNA fragments, its three-way junction (3WJ) motif is highly thermostable, is resistant to 8 M urea, and remains associated at extremely low concentrations in vitro and in vivo. To elucidate the structural basis for its unusual stability, we solved the crystal structure of this pRNA 3WJ motif at 3.05 Å. The structure revealed two divalent metal ions that coordinate 4 nt of the RNA fragments. Single-molecule fluorescence resonance energy transfer (smFRET) analysis confirmed a structural change of 3WJ upon addition of Mg2+. The reported pRNA 3WJ conformation is different from a previously published construct that lacks the metal coordination sites. The phi29 DNA packaging motor contains a dodecameric connector at the vertex of the procapsid, with a central pore for DNA translocation. This portal connector serves as the foothold for pRNA binding to procapsid. Subsequent modeling of a connector/pRNA complex suggests that the pRNA of the phi29 DNA packaging motor exists as a hexameric complex serving as a sheath over the connector. The model of hexameric pRNA on the connector agrees with AFM images of the phi29 pRNA hexamer acquired in air and matches all distance parameters obtained from cross-linking, complementary modification, and chemical modification interference.  相似文献   

14.
15.
Bacteriophage DNA packaging motors translocate their genomic DNA into viral heads, compacting it to near-crystalline density. The Bacillus subtilis phage ϕ29 has a unique ring of RNA (pRNA) that is an essential component of its motor, serving as a scaffold for the packaging ATPase. Previously, deletion of a three-base bulge (18-CCA-20) in the pRNA A-helix was shown to abolish packaging activity. Here, we solved the structure of this crucial bulge by nuclear magnetic resonance (NMR) using a 27mer RNA fragment containing the bulge (27b). The bulge actually involves five nucleotides (17-UCCA-20 and A100), as U17 and A100 are not base paired as predicted. Mutational analysis showed these newly identified bulge residues are important for DNA packaging. The bulge introduces a 33–35° bend in the helical axis, and inter-helical motion around this bend appears to be restricted. A model of the functional 120b pRNA was generated using a 27b NMR structure and the crystal structure of the 66b prohead-binding domain. Fitting this model into a cryo-EM map generated a pentameric pRNA structure; five helices projecting from the pRNA ring resemble an RNA claw. Biochemical analysis suggested that this shape is important for coordinated motor action required for DNA translocation.  相似文献   

16.
The genome of the lineal double-stranded DNA viruses of both prokaryotes and eukaryotes is packaged into a preformed procapsid during maturation. Common features exist in this step of the viral life cycle. Bacteriophage ø29 is an ideal model in this study because its DNA can be efficiently packaged in vitro with all components overproduced and purified. An exciting aspect is the discovery that a small viral RNA (pRNA) encoded by ø29 has a novel and essential role in viral DNA packaging. This pRNA is not a structural component of the mature virion, nor is it required for the assembly of the procapsid. The discovery of pRNA as a non-protein participant in viral DNA packaging extends previously demonstrated RNA functions.  相似文献   

17.
In vivo imaging of siRNA delivery and silencing in tumors   总被引:2,自引:0,他引:2  
With the increased potential of RNA interference (RNAi) as a therapeutic strategy, new noninvasive methods for detection of siRNA delivery and silencing are urgently needed. Here we describe the development of dual-purpose probes for in vivo transfer of siRNA and the simultaneous imaging of its accumulation in tumors by high-resolution magnetic resonance imaging (MRI) and near-infrared in vivo optical imaging (NIRF). These probes consisted of magnetic nanoparticles labeled with a near-infrared dye and covalently linked to siRNA molecules specific for model or therapeutic targets. Additionally, these nanoparticles were modified with a membrane translocation peptide for intracellular delivery. We show the feasibility of in vivo tracking of tumor uptake of these probes by MRI and optical imaging in two separate tumor models. We also used proof-of-principle optical imaging to corroborate the efficiency of the silencing process. These studies represent the first step toward the advancement of siRNA delivery and imaging strategies, essential for cancer therapeutic product development and optimization.  相似文献   

18.
The bacteriophage ø29 DNA packaging motor that assembles on the precursor capsid (prohead) contains an essential 174-nt structural RNA (pRNA) that forms multimers. To determine the structural features of the CE- and D-loops believed to be involved in multimerization of pRNA, 35- and 19-nt RNA molecules containing the CE-loop or the D-loop, respectively, were produced and shown to form a heterodimer in a Mg2+-dependent manner, similar to that with full-length pRNA. It has been hypothesized that four intermolecular base pairs are formed between pRNA molecules. Our NMR study of the heterodimer, for the first time, proved directly the existence of two intermolecular Watson–Crick G–C base pairs. The two potential intermolecular A–U base pairs were not observed. In addition, flexibility of the D-loop was found to be important since a Watson–Crick base pair introduced at the base of the D-loop disrupted the formation of the intermolecular G–C hydrogen bonds, and therefore affected heterodimerization. Introduction of this mutation into the biologically active 120-nt pRNA (U80C mutant) resulted in no detectable dimerization at ambient temperature as shown by native gel and sedimentation velocity analyses. Interestingly, this pRNA bound to prohead and packaged DNA as well as the wild-type 120-nt pRNA.  相似文献   

19.
20.
Small interfering RNA (siRNA) therapeutics have advanced from bench to clinical trials in recent years, along with new tools developed to enable detection of siRNA delivered at the organ, cell, and subcellular levels. Preclinical models of siRNA delivery have benefitted from methodologies such as stem-loop quantitative polymerase chain reaction, histological in situ immunofluorescent staining, endosomal escape assay, and RNA-induced silencing complex loading assay. These technologies have accelerated the detection and optimization of siRNA platforms to overcome the challenges associated with delivering therapeutic oligonucleotides to the cytosol of specific target cells. This review focuses on the methodologies and their application in the biodistribution of siRNA delivered by lipid nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号