首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract: Using expression cloning, and more recently using polymerase chain reaction cloning approaches, a family of rat N -methyl- d -aspartate (NMDA) receptor subunit cDNAs has been described (NR1, NR2A, NR2B, NR2C, and NR2D). Here we report cloning and sequencing of cDNAs encoding isoforms of the human NR1 subunit (NR1a, NR1d, and NR1e) that differ at their C-terminal end as a result of alternative splicing and also of a cDNA encoding the human NR2A subunit. The deduced amino acid sequences of the human NR1 subunit isoforms differed from the published rat NR1 subunit sequences at only eight positions, all of which were N-terminal to the alternatively spliced domains. The human NR2A subunit deduced amino acid sequence differed from the published rat NR2A subunit sequence at 81 of the 1,464 amino acids, with most of the substitutions being located in the C-terminal half of the subunit. The gene for NR2A has been localised to human chromosome 16. We also report the expression and pharmacological characterisation of recombinant human NR1a/NR2A heteromeric receptors in Xenopus oocytes. These receptors had EC50 values of 2.14 and 2.05 μ M for glutamate and glycine, respectively, and an IC50 of 46.8 μ M for Mg2+. Responses were antagonised by d -2-amino-5-phosphonovalerate, L-689,560, pH 6.3, zinc, and MK-801. No modulatory effect was observed on application of ifenprodil, confirming previous observations with rat NR1 + NR2A recombinant receptors.  相似文献   

3.
The N-methyl-D-aspartate receptor (NMDAR) is a key molecule mediating brain plasticity related processes. Knowing that alternative splicing of the NMDAR1 (NR1) subunit offers molecular diversity to NMDAR, controls the forward trafficking of the NR1 protein and is important for placing NMDA receptors at synapses, we investigated herein the postnatal developmental expression and the influence of visual deprivation on NR1 subunit splice variants in rat retina. Real-time PCR was performed using oligonucleotide primers specific for N- terminal (NR1a, NR1b) and C-terminal splice variants (NR1-1, NR1-2, NR1-3, NR1-4). The developmental profiles of mRNA expression levels of all NR1 isoforms peaked at the end of the third week. Dark rearing led to reductions in both N- and C-terminal NR1 variants in several developmental ages and a significant interaction between age and visual experience was observed for NR1a, NR1-2 and NR1-4 expression. Our results have demonstrated a developmental and visual experience-dependent regulation of NR1 splicing in rat retina.  相似文献   

4.
Abstract: Developmental changes in the levels of N -methyl- d -aspartate (NMDA) receptor subunit mRNAs were identified in rat brain using solution hybridization/RNase protection assays. Pronounced increases in the levels of mRNAs encoding NR1 and NR2A were seen in the cerebral cortex, hippocampus, and cerebellum between postnatal days 7 and 20. In cortex and hippocampus, the expression of NR2B mRNA was high in neonatal rats and remained relatively constant over time. In contrast, in cerebellum, the level of NR2B mRNA was highest at postnatal day 1 and declined to undetectable levels by postnatal day 28. NR2C mRNA was not detectable in cerebellum before postnatal day 11, after which it increased to reach adult levels by postnatal day 28. In cortex, the expression of NR2A and NR2B mRNAs corresponds to the previously described developmental profile of NMDA receptor subtypes having low and high affinities for ifenprodil, i.e., a delayed expression of NR2A correlating with the late expression of low-affinity ifenprodil sites. In cortex and hippocampus, the predominant splice variants of NR1 were those without the 5' insert and with or without both 3' inserts. In cerebellum, however, the major NR1 variants were those containing the 5' insert and lacking both 3' inserts. The results show that the expression of NR1 splice variants and NR2 subunits is differentially regulated in various brain regions during development. Changes in subunit expression are likely to underlie some of the changes in the functional and pharmacological properties of NMDA receptors that occur during development.  相似文献   

5.
N-Methyl-d-aspartate (NMDA) receptors play critical roles in complex brain functions as well as pathogenesis of neurodegenerative diseases. There are many NMDA isoforms and subunit types that, together with subtype-specific assembly, give rise to significant functional heterogeneity of NMDA receptors. Conventional NMDA receptors are obligatory heterotetramers composed of two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits. When individually expressed in heterogeneous cells, most of the NR1 splice variants and the NR2 subunits remain in the endoplasmic reticulum (ER) and do not form homomeric channels. The mechanisms underlying NMDA receptor trafficking and functional expression remain uncertain. Using truncated and chimeric NMDA receptor subunits expressed in heterogeneous cells and hippocampal neurons, together with immunostaining, biochemical, and functional analyses, we found that the NR2A amino-terminal domain (ATD) contains an ER retention signal, which can be specifically masked by the NR1a ATD. Interestingly, no such signal was found in the ATD of the NR2B subunit. We further identified the A2 segment of the NR2A ATD to be the primary determinant of ER retention. These findings indicate that NR2A-containing NMDA receptors may undergo a different ER quality control process from NR2B-containing NMDA receptors.Ionotropic glutamate receptors (iGluRs)2 mediate most of the excitatory neurotransmission in the central nervous system. They play key roles in complex brain functions as well as in the pathogenesis of neurodegenerative diseases. Based on pharmacological properties and sequence similarities, iGluRs can be grouped into three major subtypes: GluR1 to -4 subunits form α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, GluR5 to -7 and KA1 and -2 subunits make up kainate receptors, and NR1 together with NR2A to -D subunits comprise the NMDA receptors (1). All iGluR subunits share a unique membrane topology with a large extracellular NH2-terminal domain, three transmembrane segments (TM1 (transmembrane domain 1), TM3, and TM4), a P-loop region, and a cytoplasmic COOH terminus (2, 3). Based on the sequence homology to bacterial periplasmic binding proteins, the NH2-terminal domain of iGluRs can be divided into two domains in tandem: the amino-terminal domain (ATD), which includes the first 400 or so amino acids (4), and the following S1 domain preceding TM1, which forms the ligand-binding domain together with the extracellular loop between TM3 and TM4 (S2 domain) (5, 6).Among iGluRs, NMDA receptors are special in that conventional NMDA receptors are obligatory tetrameric membrane proteins composed of two glycine-binding NR1 and two glutamate-binding NR2 subunits. The NR1 subunit is essential for the formation of functional NMDA receptor channel, whereas the NR2 subunit modifies channel properties, such as current kinetics and channel conductance (1). The major NR1 splice variant and the NR2 subunits are retained in the ER when expressed alone in heterogeneous cells. Only when expressed together do they form functional receptors on the cell surface (79). In the last decade, enormous progress has been made in understanding the phenomenology and mechanisms of functional plasticity of NMDA receptors. However, much less is known about the mechanisms underlying the ER retention of NMDA receptor subunits. Previous studies focused on the COOH terminus have shown that the NR1a subunit contains an ER retention signal, RRR, in the C1 cassette, whereas a motif, HLFY, found in the NR2B subunit immediately following the TM4 (10) or, at least, the presence of any two amino acid residues after NR2 TM4 (11) is required for the export of NR1-NR2 complexes from the ER. Recently, novel ER retention signals were identified in the TM3 of both NR1 and NR2B subunits. In addition, TM3 of both NR1 and NR2B and TM4 of NR1 are necessary for masking ER retention signals found in TM3 (12).In the present study, we focused on the functional role of the ATD in the surface expression of NMDA receptors. Interestingly, we found an ER retention signal located in the ATD of the NR2A subunit but not in the corresponding domain of the NR2B. It is suggested that NR2A-containing NMDA receptors may undergo an ER quality control process different from that of NR2B-containing NMDA receptors.  相似文献   

6.
The ionotropic N-methyl-d-aspartate (NMDA) receptor is of importance in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer comprising two NR1 and two NR2 or NR3 subunits. We have carried out evolutionary trace (ET) analysis of forty ionotropic glutamate receptor (IGRs) sequences to identify and characterize the residues forming the binding socket. We have also modeled the ligand binding core (S1S2) of NMDA receptor subunits using the recently available crystal structure of NR1 subunit ligand binding core which shares ~40% homology with other NMDA receptor subunits. A short molecular dynamics simulation of the glycine-bound form of wild-type and double-mutated (D481N; K483Q) NR1 subunit structure shows considerable RMSD at the hinge region of S1S2 segment, where pore forming transmembrane helices are located in the native receptor. It is suggested that the disruption of domain closure could affect ion-channel activation and thereby lead to perturbations in normal animal behavior. In conclusion, we identified the amino acids that form the ligand-binding pocket in many ionotropic glutamate receptors and studied their hydrogen bonded and nonbonded interaction patterns. Finally, the disruption in the S1S2 domain conformation (of NR1 subunit- crystal structure) has been studied with a short molecular dynamics simulation and correlated with some experimental observations.Figure The figure shows the binding mechanism of glutamate with NR2B subunit of the NMDA receptor. Glutamate is shown in cpk, hydrogen bonds in dotted lines and amino acids in blue. The amino acids shown here are within a 4-Å radius of the ligand (glutamate)  相似文献   

7.
NMDA receptors are ionotropic glutamate receptors assembled of subunits of the NR1 and of the NR2 family (NR2A–NR2D). The subunit diversity largely affects the pharmacological properties of NMDA receptors and, hence, gives rise to receptor heterogeneity. As an overall result of studies on recombinant and native NMDA receptors, ethanol inhibits the function of receptors containing the subunits NR2A and/or NR2B to a greater extent than those containing NR2C or NR2D. For example, in rat cultured mesencephalic neurons, NR2C expression was developmentally increased, whereas expression of NR2A and NR2B was decreased. These changes coincided with a developmental loss of sensitivity of NMDA responses to ethanol and ifenprodil, a non-competitive NMDA receptor antagonist that shows selectivity for NR2B-containing receptors. Also in rat locus coeruleus neurons, the low ethanol sensitivity of somatic NMDA receptors could be explained by a prominent expression of NR2C. The inhibitory site of action for ethanol on the NMDA receptor is not yet known. Patch–clamp studies suggest a target site exposed to or only accessible from the extracellular environment. Apparently, amino acid residue Phe639, located in the TM3 domain of NR1, plays a crucial role in the inhibition of NMDA receptor function by ethanol. Since this phenylalanine site is common to all NMDA and non-NMDA receptor (AMPA/kainate receptor) subunits, this observation is consistent with accumulating evidence for a similar ethanol sensitivity of a variety of NMDA and non-NMDA receptors, but it cannot explain the differences in ethanol sensitivity observed with different NR2 subunits.  相似文献   

8.
The biophysical properties of NMDA receptors are thought to be critical determinants involved in the regulation of long-term synaptic plasticity during neocortical development. NMDA receptor channel properties are strongly dependent on the subunit composition of heteromeric NMDA receptors. During neocortical development in vivo, the expression of the NMDA receptor 2A (NR2A) subunit is up-regulated at the mRNA and protein level correlating with changes in the kinetic and pharmacological properties of functional NMDA receptors. To investigate the developmental regulation of NMDA receptor subunit expression, we studied NR2 mRNA expression in cultured neocortical neurons. With increasing time in culture, they showed a similar up-regulation of NR2A mRNA expression as described in vivo. As demonstrated by chronic blockade of postsynaptic glutamate receptors in vitro, the regulation of NR2A mRNA was strongly dependent on synaptic activity. In contrast, NR2B mRNA expression was not influenced by activity blockade. Moreover, as shown pharmacologically, the regulation of NR2A mRNA expression was mediated by postsynaptic Ca(2+) influx through both NMDA receptors and L-type Ca(2+) channels. It is interesting that even relatively weak expression of NR2A mRNA was correlated with clearly reduced sensitivity of NMDA receptor-mediated whole-cell currents against the NR2B subunit-specific antagonist ifenprodil. Developmental changes in the expression of NR1 mRNA splice variants were also strongly dependent on synaptic activity and thus might, in addition to regulation of NR2 subunit expression, contribute to developmental changes in the properties of functional NMDA receptors. In summary, our results demonstrate that synaptic activity is a key factor in the regulation of NMDA receptor subunit expression during neocortical development.  相似文献   

9.
The depressant actions of ethanol on central nervous system activity appear to be mediated by its actions on a number of important membrane associated ion channels including the N-methyl-d-aspartate (NMDA) subtype of ionotropic glutamate receptor. Although no specific site of action for ethanol on the NMDA receptor has been found, previous studies suggest that the ethanol sensitivity of the receptor may be affected by intracellular C-terminal domains of the receptor that regulate the calcium-dependent inactivation of the receptor. In the present study, co-expression of the NR2A subunit and an NR1 subunit that lacks the alternatively spliced intracellular C1 cassette did not reduce the effects of ethanol on channel function as measured by patch-clamp electrophysiology. Full inhibition was also observed in cells expressing an NR1 subunit truncated at the end of the C0 domain (NR1(863stop)). However, the inhibitory effects of ethanol were reduced by expression of an NR1 C0 domain deletion mutant (NR1(Delta839-863)), truncation mutant (NR1(858stop)), or a triple-point mutant (Arg to Ala, Lys to Ala, and Asn to Ala at 859-861) previously shown to significantly reduce calcium-dependent inactivation. A similar reduction in the effects of ethanol on wild-type NR1/2A but not NR1/2B or NR1/2C receptors was observed after co-expression of full-length or truncated human skeletal muscle alpha-actinin-2 proteins that produce a functional knockout of the C0 domain. The effects of ethanol on hippocampal and cortical NMDA-induced currents were similarly attenuated in low calcium recording conditions, suggesting that a C0 domain-dependent process may confer additional ethanol sensitivity to NMDA receptors.  相似文献   

10.
11.
The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-d-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression of the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G1 phase of cell cycling and decreased the proportion in the S/G2 phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G1 phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.  相似文献   

12.
To analyze retinoic acid (RA) receptor (RAR) expression during early development in the urodele embryo, we have isolated cDNAs for four members of the axolotl (Ambystoma mexicanum) RAR family, namely RAR alpha (NR1B1), aRAR gamma 1 (NR1B3a), aRAR gamma 2 (NR1B3b), and a new splicing variant of aRAR gamma 2, aRAR gamma 3 (NR1B3c), which contains an insertion of five hydrophobic amino acids in the C-terminal region of the DNA binding domain. The temporal expression pattern of the RAR gamma isoforms was established by RT-PCR using total RNA from embryos of different stages. The expression of aRAR gamma 2 coincides with neurulation and is enhanced in the extremities of the embryo's anteroposterior axis. The aRAR gamma 3 is specifically expressed during gastrulation and early neurulation, whereas aRAR gamma 1 is expressed later during organogenesis. Global aRAR gamma 2 mRNA levels, as well as their spatio-temporal expression pattern in the neurula, were not affected by treatment with RA. These results show that several RARs are expressed in the axolotl embryo during early development, and reveal the existence of a new RAR gamma variant.  相似文献   

13.
NMDA receptor (NMDAR)-mediated excitatory synaptic transmission plays a critical role in synaptic plasticity and memory formation, whereas its dysfunction may underlie neuropsychiatric and neurodegenerative diseases. The neuroactive steroid pregnenolone sulfate (PS) acts as a cognitive enhancer in impaired animals, augments LTP in hippocampal slices by enhancing NMDAR activity, and may participate in the reduction of schizophrenia's negative symptoms by systemic pregnenolone. We report that the effects of PS on NMDAR function are diverse, varying with subunit composition and NR1 splice variant. While PS potentiates NR1-1a/NR2B receptors through a critical steroid modulatory domain in NR2B that also modulates tonic proton inhibition, potentiation of the NMDA response is not dependent upon relief of such inhibition, a finding that distinguishes it from spermine. In contrast, the presence of an NR2A subunit confers enhanced PS-potentiation at reduced pH, suggesting that it may indeed act like spermine does at NR2B-containing receptors. Additional tuning of the NMDAR response by PS comes via the N-terminal exon-5 splicing insert of NR1-1b, which regulates the magnitude of proton-dependent PS potentiation. For NR2C- and NR2D-containing receptors, negative modulation at NR2C receptors is pH-independent (like NR2B) while negative modulation at NR2D receptors is pH-dependent (like NR2A). Taken together, PS displays a rich modulatory repertoire that takes advantage of the structural diversity of NMDARs in the CNS. The differential pH sensitivity of NMDAR isoforms to PS modulation may be especially important given the emerging role of proton sensors to both learning and memory, as well as brain injury.  相似文献   

14.
Two structurally related subtypes of oestrogen receptor (ER), known as alpha (ER alpha, NR3A1) and beta (ER beta, NR3A2) have been identified. ER beta mRNA and protein have been detected in a wide range of tissues including the vasculature, bone, and gonads in both males and females, as well as in cancers of the breast and prostate. In many tissues the pattern of expression of ER beta is distinct from that of ER alpha. A number of variant isoforms of the wild type beta receptor (ER beta 1), have been identified. In the human these include: (1). use of alternative start sites within the mRNA leading to translation of either a long (530 amino acids, hER beta 1L) or a truncated form (487aa hER beta 1s); (2). deletion of exons by alternative splicing; (3). formation of several isoforms (ER beta 2-beta 5) due to alternative splicing of exons encoding the carboxy terminus (F domain). We have raised monoclonal antibodies specific for hER beta1 as well as to three of the C terminal isoforms (beta2, beta 4 and beta 5). Using these antibodies we have found that ER beta 2, beta 4 and beta 5 proteins are expressed in nuclei of human tissues including the ovary, placenta, testis and vas deferens.In conclusion, in addition to the differential expression of full length ER alpha and ER beta a number of ER variant isoforms have been identified. The impact of the expression of these isoforms on cell responsiveness to oestrogens may add additional complexity to the ways in which oestrogenic ligands influence cell function.  相似文献   

15.
NMDA receptors represent a subtype of the ionotropic glutamate receptor family, comprising three classes of subunits (NR1, NR2A-D, NR3), which exhibit distinct patterns of regional and developmental expression in the CNS. Recently, some NMDA receptor subunits have also been described in adult extraneuronal tissues and keratinocytes. However, their developmental expression patterns are currently unknown. With use of RT-PCR and western blot analysis, the expression of NMDA receptor subunit NR2B was investigated in the developing rat heart. NR2B mRNA and protein were detected in heart tissue of rats from embryonic day 14 until postnatal day 21 but disappeared 10 weeks after birth. In contrast, no NMDA receptor subunit NR1, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR2, or anchoring postsynaptic density protein-95 could be detected in rat heart at any developmental stage. Confocal microscopy of cultured cardiac myocytes (CMs) from neonatal rats revealed distinct NR2B staining mainly of intracellular structures. However, no functional NMDA receptor could be detected on CMs by whole-cell recordings. In conclusion, high concentrations of NR2B protein can be detected in early rat heart development, but its function still remains elusive.  相似文献   

16.
NMDA receptors are a subclass of ionotropic glutamate receptors. They are trafficked and/or clustered at synapses by the post-synaptic density (PSD)-95 membrane associated guanylate kinase (MAGUK) family of scaffolding proteins that associate with NMDA receptor NR2 subunits via their C-terminal glutamate serine (aspartate/glutamate) valine motifs. We have carried out a systematic study investigating in a heterologous expression system, the association of the four major NMDA receptor subtypes with the PSD-95 family of MAGUK proteins, chapsyn-110, PSD-95, synapse associated protein (SAP) 97 and SAP102. We report that although each PSD-95 MAGUK was shown to co-immunoprecipitate with NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptor subtypes, they elicited differential effects with regard to the enhancement of total NR2 subunit expression which then results in an increased cell surface expression of NMDA receptor subtypes. PSD-95 and chapsyn-110 enhanced NR2A and NR2B total expression which resulted in increased NR1/NR2A and NR1/NR2B receptor cell surface expression whereas SAP97 and SAP102 had no effect on total or cell surface expression of these subtypes. PSD-95, chapsyn-110, SAP97 and SAP102 had no effect on either total NR2C and NR2D subunit expression or cell surface NR1/NR2C and NR1/NR2D expression. A comparison of PSD-95α, PSD-95β and PSD-95αC3S,C5S showed that PSD-95-enhanced cell surface expression of NR1/NR2A receptors was dependent upon the PSD-95 N-terminal C3,C5 cysteines. These observations support differential interaction of NMDA receptor subtypes with different PSD-95 MAGUK scaffolding proteins. This has implications for the stabilisation, turnover and compartmentalisation of NMDA receptor subtypes in neurones during development and in the mature brain.  相似文献   

17.
The intracellular C-terminal domain of the N-methyl-d-aspartate receptor (NMDAR) subunits 1 (NR1) and 2 (NR2) are important, if not essential, to the process of NMDAR clustering and anchoring at the plasma membrane and the synapse. Eight NR1 splice variants exist, four of which arise from alternative splicing of the C-terminal exon cassettes. Alternative splice variants may display a differential ability to interact with synaptic anchoring proteins, and splicing of C-terminal exon cassettes may alter the mechanism(s) of subcellular localization and targeting. The NR1-4 isoform has a significantly different C-terminal composition than the prototypic NR1-1 isoform. Whereas the NR1-1 C terminus is composed of C0, C1, and C2 exon cassettes, the NR1-4 C terminus is composed of the C0 and C2' cassettes. In the present study, we address the importance of the NR1-4 C-terminal exon cassettes (C0C2') in subcellular localization in differentiated pheochromocytoma (PC12) cells, in organotypic cultures of dorsal root ganglia, and also in heterologous cells. NR1-4-green fluorescent protein chimeras were created with deletion of either C0, C2', or both cassettes to address their importance in subcellular distribution and cell surface expression of the NR1-4 subunit. These experiments demonstrate that the NR1-4 splice variant found predominantly in the spinal cord uses the C0 cassette, to a large degree, to organize the subcellular distribution of this receptor subunit. Although the role of the C2' subunit is less clear, it may be involved in subunit clustering. However, this clustering is not always as efficient as that attributed to C0 alone or to the natural combination of C0C2'. Finally, although an intact C-terminal domain is neither necessary for interaction with the NR2A subunit nor surface expression of the NR1-4 subunit, the C-terminal domain fragment alone blocks surface expression of native NR1-4, in a dominant negative fashion, when the two are coexpressed.  相似文献   

18.
19.
20.
This is a study of the interaction between the two NMDA neurotransmitter receptor subtypes, NR1/NR2A and NR1/NR2B, and amyloid precursor protein (APP) 695, the major APP variant expressed in neurones. APP695 co‐immunoprecipitated with assembled NR1‐1a/NR2A and NR1‐1a/NR2B NMDA receptors following expression in mammalian cells. Single NR1‐1a, NR1‐2a, NR1‐4bc‐Myc, or NR2 subunit transfections revealed that co‐association of APP695 with assembled NMDA receptors was mediated via the NR1 subunit; it was independent of the NR1 C1, C2, and C2′ cassettes and, the use of an NR1‐2ac‐Myc‐trafficking mutant suggested that interaction between the two proteins occurs in the endoplasmic reticulum. The use of antibodies directed against extracellular and intracellular NR2 subunit epitopes for immunoprecipitations suggested that APP/NMDA receptor association was mediated via N‐terminal domains. Anti‐APP antibodies immunoprecipitated NR1, NR2A, and NR2B immunoreactive bands from detergent extracts of mammalian brain; reciprocally, anti‐NR1 or anti‐NR2A antibodies co‐immunoprecipitated APP immunoreactivity. Immune pellets from brain were sensitive to endoglycosidase H suggesting that, as for heterologous expression, APP and NMDA receptor association occurs in the endoplasmic reticulum. Co‐expression of APP695 in mammalian cells resulted in enhanced cell surface expression of both NR1‐1a/NR2A and NR1‐1a/NR2B NMDA receptors with no increase in total subunit expression. These findings are further evidence for a role of APP in intracellular trafficking mechanisms. Further, they provide a link between two major brain proteins that have both been implicated in Alzheimer’s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号