首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
The conformational changes in the agonist binding domain of the glycine-binding GluN1 and glutamate-binding GluN2A subunits of the N-methyl D-aspartic acid receptor upon binding agonists of varying efficacy have been investigated by luminescence resonance energy transfer (LRET) measurements. The LRET-based distances indicate a cleft closure conformational change at the GluN1 subunit upon binding agonists; however, no significant changes in the cleft closure are observed between partial and full agonists. This is consistent with the previously reported crystal structures for the isolated agonist binding domain of this receptor. Additionally, the LRET-based distances show that the agonist binding domain of the glutamate-binding GluN2A subunit exhibits a graded cleft closure with the extent of cleft closure being proportional to the extent of activation, indicating that the mechanism of activation in this subunit is similar to that of the glutamate binding α-amino-5-methyl-3-hydroxy-4-isoxazole propionate and kainate subtypes of the ionotropic glutamate receptors.  相似文献   

2.
The mannitol transporter from Escherichia coli, EIImtl, belongs to a class of membrane proteins coupling the transport of substrates with their chemical modification. EIImtl is functional as a homodimer, and it harbors one high affinity mannitol-binding site in the membrane-embedded C domain (IICmtl). To localize this binding site, 19 single Trp-containing mutants of EIImtl were biosynthetically labeled with 5-fluorotryptophan (5-FTrp) and mixed with azi-mannitol, a substrate analog acting as a Förster resonance energy transfer (FRET) acceptor. Typically, for mutants showing FRET, only one 5-FTrp was involved, whereas the 5-FTrp from the other monomer was too distant. This proves that the mannitol-binding site is asymmetrically positioned in dimeric IICmtl. Combined with the available two-dimensional projection maps of IICmtl, it is concluded that a second resting binding site is present in this transporter. Active transport of mannitol only takes place when EIImtl becomes phosphorylated at Cys384 in the cytoplasmic B domain. Stably phosphorylated EIImtl mutants were constructed, and FRET experiments showed that the position of mannitol in IICmtl remains the same. We conclude that during the transport cycle, the phosphorylated B domain has to move to the mannitol-binding site, located in the middle of the membrane, to phosphorylate mannitol.  相似文献   

3.
4.
Solution structures and biochemical data have provided a wealth of mechanistic insight into Ras GTPases. However, information on how much the membrane organization of these lipid-modified proteins impacts on their signaling is still scarce. Ras proteins are organized into membrane nanoclusters, which are necessary for Ras-MAPK signaling. Using quantitative conventional and super-resolution fluorescence methods, as well as mathematical modeling, we investigated nanoclustering of H-ras helix α4 and hypervariable region mutants that have different bona fide conformations on the membrane. By following the emergence of conformer-specific nanoclusters in the plasma membrane of mammalian cells, we found that conformers impart distinct nanoclustering responses depending on the cytoplasmic levels of the nanocluster scaffold galectin-1. Computational modeling revealed that complexes containing H-ras conformers and galectin-1 affect both the number and lifetime of nanoclusters and thus determine the specific Raf effector recruitment. Our results show that mutations in Ras can affect its nanoclustering response and thus allosterically effector recruitment and downstream signaling. We postulate that cancer- and developmental disease-linked mutations that are associated with the Ras membrane conformation may exhibit so far unrecognized Ras nanoclustering and therefore signaling alterations.  相似文献   

5.
We have detected directly the interactions of sarcolipin (SLN) and the sarcoplasmic reticulum Ca-ATPase (SERCA) by measuring fluorescence resonance energy transfer (FRET) between fusion proteins labeled with cyan fluorescent protein (donor) and yellow fluorescent protein (acceptor). SLN is a membrane protein that helps control contractility by regulating SERCA activity in fast-twitch and atrial muscle. Here we used FRET microscopy and spectroscopy with baculovirus expression in insect cells to provide direct evidence for: 1) oligomerization of SLN and 2) regulatory complex formation between SLN and the fast-twitch muscle Ca-ATPase (SERCA1a isoform). FRET experiments demonstrated that SLN monomers self-associate into dimers and higher order oligomers in the absence of SERCA, and that SLN monomers also bind to SERCA monomers in a 1:1 binary complex when the two proteins are coexpressed. FRET experiments further demonstrated that the binding affinity of SLN for itself is similar to that for SERCA. Mutating SLN residue isoleucine-17 to alanine (I17A) decreased the binding affinity of SLN self-association and converted higher order oligomers into monomers and dimers. The I17A mutation also decreased SLN binding affinity for SERCA but maintained 1:1 stoichiometry in the regulatory complex. Thus, isoleucine-17 plays dual roles in determining the distribution of SLN homo-oligomers and stabilizing the formation of SERCA-SLN heterodimers. FRET results for SLN self-association were supported by the effects of SLN expression in bacterial cells. We propose that SLN exists as multiple molecular species in muscle, including SERCA-free (monomer, dimer, oligomer) and SERCA-bound (heterodimer), with transmembrane zipper residues of SLN serving to stabilize oligomeric interactions.  相似文献   

6.
Na/K-ATPase (NKA) activity is dynamically regulated by an inhibitory interaction with a small transmembrane protein, phospholemman (PLM). Inhibition is relieved upon PLM phosphorylation. Phosphorylation may alter how PLM interacts with NKA and/or itself, but details of these interactions are unknown. To address this, we quantified FRET between PLM and its regulatory target NKA in live cells. Phosphorylation of PLM was mimicked by mutation S63E (PKC site), S68E (PKA/PKC site), or S63E/S68E. The dependence of FRET on protein expression in live cells yielded information about the structure and binding affinity of the PLM-NKA regulatory complex. PLM phosphomimetic mutations altered the quaternary structure of the regulatory complex and reduced the apparent affinity of the PLM-NKA interaction. The latter effect was likely due to increased oligomerization of PLM phosphomimetic mutants, as suggested by PLM-PLM FRET measurements. Distance constraints obtained by FRET suggest that phosphomimetic mutations slightly alter the oligomer quaternary conformation. Photon-counting histogram measurements revealed that the major PLM oligomeric species is a tetramer. We conclude that phosphorylation of PLM increases its oligomerization into tetramers, decreases its binding to NKA, and alters the structures of both the tetramer and NKA regulatory complex.  相似文献   

7.
8.
Mitochondria undergo continuous cycles of homotypic fusion and fission, which play an important role in controlling organelle morphology, copy number, and mitochondrial DNA maintenance. Because mitochondria cannot be generated de novo, the motility and distribution of these organelles are essential for their inheritance by daughter cells during division. Mitochondrial Rho (Miro) GTPases are outer mitochondrial membrane proteins with two GTPase domains and two EF-hand motifs, which act as receptors to regulate mitochondrial motility and inheritance. Here we report that although all of these domains are biochemically active, only the GTPase domains are required for the mitochondrial inheritance function of Gem1p (the yeast Miro ortholog). Mutations in either of the Gem1p GTPase domains completely abrogated mitochondrial inheritance, although the mutant proteins retained half the GTPase activity of the wild-type protein. Although mitochondrial inheritance was not dependent upon Ca(2+) binding by the two EF-hands of Gem1p, a functional N-terminal EF-hand I motif was critical for stable expression of Gem1p in vivo. Our results suggest that basic features of Miro protein function are conserved from yeast to humans, despite differences in the cellular machinery mediating mitochondrial distribution in these organisms.  相似文献   

9.
The signaling capacity of seven-transmembrane/G-protein-coupled receptors (7TM/GPCRs) can be regulated through ligand-mediated receptor trafficking. Classically, the recycling of internalized receptors is associated with resensitization, whereas receptor degradation terminates signaling. We have shown previously that the incretin glucagon-like peptide-1 receptor (GLP-1R) internalizes fast and is primarily resensitized through recycling back to the cell surface. GLP-1R is expressed in pancreatic islets together with the closely related glucose-dependent insulinotropic polypeptide (GIPR) and glucagon (GCGR) receptors. The interaction and cross-talk between coexpressed receptors is a wide phenomenon of the 7TM/GPCR superfamily. Numerous reports show functional consequences for signaling and trafficking of the involved receptors. On the basis of the high structural similarity and tissue coexpression, we here investigated the potential cross-talk between GLP-1R and GIPR or GCGR in both trafficking and signaling pathways. Using a real-time time-resolved FRET-based internalization assay, we show that GLP-1R, GIPR, and GCGR internalize with differential properties. Remarkably, upon coexpression of the internalizing GLP-1R and the non-internalizing GIPR, GLP-1-mediated GLP-1R internalization was impaired in a GIPR concentration-dependent manner. As a functional consequence of such impaired internalization capability, GLP-1-mediated GLP-1R signaling was abrogated. A similar compromised signaling was found when GLP-1R internalization was abrogated by a dominant-negative version of dynamin (dynamin-1 K44E), which provides a mechanistic link between GLP-1R trafficking and signaling. This study highlights the importance of receptor internalization for full functionality of GLP-1R. Moreover, cross-talk between the two incretin receptors GLP-1R and GIPR is shown to alter receptor trafficking with functional consequences for GLP-1R signaling.  相似文献   

10.
Dimerization of G protein-coupled receptors has received much attention as a regulatory system of physiological function. Metabotropic glutamate receptors (mGluRs) are suitable models for studying the physiological significance of G protein-coupled receptor dimers because they form constitutive homodimers and function through dimeric rearrangement of their extracellular ligand binding domains. However, the molecular architecture of the transmembrane domains (TMDs) and their rearrangement upon agonist binding are still largely unknown. Here we show that the two helix Vs are arranged as the closest part in the dimeric TMDs and change their positions through synergistic control by the binding of two glutamates. The possibility that helix V is involved in an inter-protomer communication was first suggested by the finding that constitutively active mutation sites were identified on both sides of helix V. Then, comprehensive fluorescence resonance energy transfer (FRET) analysis using mGluRs whose cytoplasmic loops were labeled with donor and acceptor fluorescent proteins revealed that the third intracellular loop connecting helices V and VI of one protomer was in close proximity to the second and third intracellular loops of the other protomer and that all the intracellular loops became closer during the activation. Furthermore, FRET analysis of heterodimers in which only one protomer had ligand binding ability revealed the synergistic effect of the binding of two glutamates on the dimeric rearrangements of the TMD. Thus, the glutamate-dependent synergistic relocation of the helix Vs in the dimer is important for the signal flow from the extracellular ligand binding domain to the cytoplasmic surface of the mGluR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号