首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this video, we demonstrate the technique of soft lithography with polydimethyl siloxane (PDMS) which we use to fabricate a microfluidic device for culturing neurons. Previously, a silicon wafer was patterned with the design for the neuron microfluidic device using SU-8 and photolithography to create a master mold, or what we simply refer to as a "master". Next, we pour the silicon polymer PDMS on top of the master which is then cured by heating the PDMS to 80 degrees C for 1 hour. The PDMS forms a negative mold of the device. The PDMS is then carefully cut and lifted away from the master. Holes are punched where the reservoirs will be and the excess PDMS trimmed away from the device. Nitrogen is used to blow away any excess debris from the device. At this point the devices are now ready for use and can either bonded to corning No. 1 cover glass with a plasma sterilizer/cleaner or can be reversibly bound to the cover glass by simply placing the device on top of the cover glass. The reversible bonding of the device to glass is covered in a separate video and requires first that the device be sterilized either with 70% ethanol or by autoclaving. Plasma treating sterilizes the devices so no further treatment is necessary. It is, however, important, when plasma-treating the devices, to add liquid to the devices within 10 minutes of the plasma treatment while the surfaces are still hydrophilic. Waiting longer than 10 minutes to add liquid to the device makes it difficult for the liquid to enter the device. The neuron devices are typically plasma-bound to cover glass and 0.5 mg/ml poly-L-lysine (PLL) in pH 8.5 borate buffer is immediately added to the device. After a minimum of 3 hours incubating with PLL, the devices are washed with dH2O water a minimum of 3 times with at least 15 minutes between each wash. Next, the water is removed and fresh media is added to the device. At this point the device is ready for use. It is important to remember at this point to never remove all the media from the device. Always leave media in the main channel.  相似文献   

2.
J. M. Parada 《Hydrobiologia》2008,610(1):351-354
This paper presents a new device to collect quantitative samples of sediment and benthic organisms. The device is specially designed for sampling with the advantages of box-corer or Eckman dredges in submerged areas that are accessible on foot. The pedal corer is a simple, lightweight, user-friendly device that does not disturb the sediment structure and provides easy access to the sample contained inside the core. With this device, sampling in shallow water zones that are constantly submerged is made easy and sampling time is extended in intertidal zones. Handling editor: J. Saros  相似文献   

3.
ObjectivesThe aim of this study is to evaluate device size selection in patients within the borderline annulus size range undergoing transcatheter aortic valve replacement (TAVR) and to assess if pre-procedural patient-specific computer simulation will lead to the selection of a different device size than standard of care.BackgroundIn TAVR, appropriate device sizing is imperative. In borderline annulus size cases no standardised technique for tailored device size selection is currently available. Pre-procedural patient-specific computer simulation can be used, predicting the risk for paravalvular leakage (PVL) and need for permanent pacemaker implantation (PPI).MethodsIn this multicentre retrospective study, 140 patients in the borderline annulus size range were included. Hereafter, device size selection was left to the discretion of the operator. After TAVR, in 24 of the 140 patients, patient-specific computer simulation calculated the most appropriate device size expected to give the lowest risk for PVL and need for PPI. In these 24 patients, device size selection based on patient-specific computer simulation was compared with standard-of-care device size selection relying on a standardised matrix (Medtronic).ResultsIn a significant proportion of the 140 patients (26.4%) a different device size than recommended by the matrix was implanted. In 10 of the 24 patients (41.7%) in whom a computer simulation was performed, a different device size was recommended than by means of the matrix.ConclusionsDevice size selection in patients within the borderline annulus size range is still ambiguous. In these patients, patient-specific computer simulation is feasible and can contribute to a more tailored device size selection.  相似文献   

4.
Stereotactic radiosurgery is a method for focused irradiation of intracranial lesions. Linac-based radiosurgery is currently performed by two techniques: couch mounted and pedestal mounted. In the first technique a device is required to affix the patient's head to the couch and neoreover to translate it accurately. Structure of such a device constructed by the authors plus acceptance test performed for evaluation is described in the article.A head docking device has been designed and constructed according to geometry of linac's couch and also desired functions. The device is cornpletely made from aluminum and consists of four major components: attachment bar, lower structure with four moveing accuracy mechanical stability and isocentric accuracy were assessed in the frame of acceptance test.Translating accuracy, mechanical stability and isocentric accuracy were found to be respectively: 1 mm, 1.64 mm and 3.2 mm with accuracy of 95%.According to AAPM report no. 54, a head docking device should translate head with an accuracy of 1 mm; this recommendation has been met. Moreover, we have demonstrated that the isocentric accuracy and mechanical stability of the device are sufficient that the device on confidently be used in stereotactic treatment.  相似文献   

5.
This paper presents a method and a device to position and displace cells. The cells are suspended in a fluid layer trapped between the device and an arbitrary surface such as an object slide or a wafer. The device vibrates at ultrasonic frequencies causing a pressure field in the fluid layer. This pressure field results in a force-field capable of positioning cells. Depending on the way in which the device is excited a 2-D or 3-D force-field can be generated, positioning the cells in lines or points respectively. Furthermore, it is possible to subsequently displace the cells with micrometer accuracy. This has been demonstrated using HL60 and MCF10A cells, and can be achieved without causing damage to the cells.  相似文献   

6.
A device for the precise localization (better than 0.5 micron) of an object on a grid has been developed and connected to the translation system of an electron microscope. Applied to biological thin sections, this device enables to easily find and to observe a selected microcrystal projection obtained by the grid sectioning technique. Moreover, low dose observations on ribbons of ultrathin sections can be made because the information is repeated in the successive sections of the ribbon: With the device the position of the selected object is determined at high dose in one section and low dose measurement is made on the following section.  相似文献   

7.
A device constructed on the base of a slide and a coverslip is proposed for immobilisation of small biological objects. The device permits performance of gradual and reversible squeezing of live micro-objects. Using the above device it is possible to watch one and the same living object, (for example, a ciliate) repeatedly within a prolonged period of time.  相似文献   

8.
In this video, we demonstrate how to use the neuron microfluidic device without plasma bonding. In some cases it may be desirable to reversibly bond devices to the Corning No. 1 cover glass. This could be due, perhaps, to a plasma cleaner not being available. In other instances, it may be desirable to remove the device from the glass after the culturing of neurons for certain types of microscopy or for immunostaining, though it is not necessary to remove the device for immunostaining since the neurons can be stained in the device. Some researchers, however, still prefer to remove the device. In this case, reversible bonding of the device to the cover glass makes that possible. There are some disadvantages to non-plasma bonding of the devices in that not as tight of a seal is formed. In some cases axons may grow under the grooves rather than through them. Also, because the glass and PDMS are hydrophobic, liquids do not readily enter the device making it necessary at times to force media and other reagents into the device. Liquids will enter the device via capillary action, but it takes significantly longer as compared to devices that have been plasma bonded. The plasma cleaner creates temporary hydrophilic charges on the glass and device that facilitate the flow of liquids through the device after bonding within seconds. For non-plasma bound devices, liquid flow through the devices takes several minutes. It is also important to note that the devices to be used with non-plasma bonding need to be sterilized first, whereas plasma treated devices do not need to be sterilized prior to use because the plasma cleaner will sterilize them.  相似文献   

9.
There is a potential use for intradermic or hypodermic drug delivery in skin surgery or aesthetic surgery. Hypodermic delivery with the use of a noninvasive device can be a more useful, reliable, and effective administration route to obtain higher compliance. The authors developed a microneedle device composed of three fine needles (three-microneedle device). The tip of each needle was fabricated with a bevel angle to release a drug broadly into the tissue in a horizontal fashion. In this study, the authors investigated the usefulness of this newly developed three-microneedle device for hypodermic liquid injection, focusing on the optimum insertion depth and the diffusion of injected materials to the tissue. The authors also assessed the efficacy of and patient satisfaction with three-microneedle device injections of botulinum toxin type A for wrinkle reduction in patients with glabellar rhytides. The three-microneedle device yielded consistent results in hypodermal diffusion. On India ink diffusion test and ultrasonographic imaging, three-microneedle device injection showed a broad diffusion in horizontal extension, as compared with usual 31-gauge needle injection. The efficiency and satisfaction of the patients receiving botulinum toxin type A with the three-microneedle device were highly rated. Three-microneedle device delivery enables accurate and broad diffusion of injected substances, thus reducing the total dose and/or injection number of drugs. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, IV.  相似文献   

10.
The feasibility of electron transport conduction through a guanine base of DNA was investigated and then compared with another component of DNA, i.e., cytosine. A mathematical approach based on the jellium model using non-equilibrium Green’s function combined with semi empirical extended Huckel theory was applied using the Atomistik Tool Kit. This was further used to measure significant transport parameters such as current, conductance, transmission spectra and the HOMO–LUMO gap of the suggested molecular system. An important revelation from our research work is that the cytosine-based molecular device exhibits metallic behavior with current ranging up to 70 μA, and hence establishes itself as a good conductor. On the other hand, the guanine-based device is comparatively less conductive, exhibiting current in the order of 3 μA. Another interesting observation about the guanine-based device is the visibility of a prominent negative differential resistance effect during the positive bias and a tunneling effect during negative bias. The uniform charge transfer through the cytosine device confirms its application as a molecular wire. The observations on the guanine-based device give better insights into its application as a memory device for nano-scale devices.  相似文献   

11.
Nucleic acid purification using microfabricated silicon structures   总被引:9,自引:0,他引:9  
A microfluidic device has been designed, fabricated and tested for its ability to purify bacteriophage lambda DNA and bacterial chromosomal DNA, a necessary prerequisite for its incorporation into a biosensor. This device consists of a microfabricated channel in which silica-coated pillars were etched to increase the surface area within the channel by 300-600%, when the etch depth is varied from 20 to 50 microm. DNA was selectively bound to these pillars in the presence of the chaotropic salt guanidinium isothiocyanate, followed by washing with ethanol and elution with low-ionic strength buffer. Positive pressure was used to move solutions through the device, removing the need for centrifugation steps. The binding capacity for DNA in the device was approximately 82 ng/cm2 and on average, 10% of the bound DNA could be purified and recovered in the first 50 microl of elution buffer. Additionally, the device removed approximately 87% of the protein from a cell lysate. Nucleic acids recovered from the device were efficiently amplified by the polymerase chain reaction suggesting the utility of these components in an integrated, DNA amplification-based biosensor. The miniaturized format of this purification device, along with its excellent purification characteristics make it an ideal component for nucleic acid-based biosensors, especially those in which nucleic acid amplification is a critical step.  相似文献   

12.
Purpose: The main purpose of this study is to develop a device for the indicative measurement of intraocular pressure (IOP) of eyeball, a key cause for glaucoma. In early diagnosis and treatment of glaucoma accurate measurement of IOP is important. The methods and devices which are available for the measurement of IOP have their own limitations which cause discomfort to the patients during measurement and needs anesthesia. There is a dare need of a device for the measurement of intraocular pressure by making the contact of plunger with closed eyelid eliminating the need of anesthesia and expert ophthalmologist. Method: Additive manufacturing (AM) is an era of technical development and innovation. Developing a device for detecting glaucoma by using AM and TRIZ ‘The theory of inventive problem solving’ (A Collaborative approach) can overcome the disadvantages that classic tonometer have. The field of Ophthalmology will be experiencing a paradigm shift towards the use of collaborative approach of TRIZ with AM. The developed new device was tested on 40 patient’s eye at Government Hospital Bhandara, (M. S.), India. The results of new device were cross verified by expert clinicians using calibrated Schiotz’s tonometer and digital palpation technique. Result: The developed new device was tested on patient’s eye through eyelid and results were compared with calibrated Schiotz’s tonometer. The results from the new device were found in good agreement with results from Schiotz’s tonometer with the average error of 0.033 ± 0.18 (mean ± SD) mm of Hg and mean relative error was -0.0018 ±0.0096 (mean ± SD). Conclusion: There is a substantial need for early detection and diagnosis of glaucoma in rural and remote areas (worldwide). A new device for detection of glaucoma using AM and TRIZ was introduced in this paper and measurements by the new device were by currently well accepted Schiotz’s tonometer. The new device will help the medical practitioners in rural and remote areas for early detection of glaucoma.  相似文献   

13.
A new artificial insemination device for semen deposition near the utero-tubal junction in cattle (Ghent device) has been developed at the Ghent University (Belgium). In this study, the effect of the new insemination device on sperm quality was evaluated. Moreover, in a field trial 4064 dairy cows were inseminated by 12 inseminators to examine the efficacy of the device under field conditions.The Ghent device is a disposable plastic catheter which can easily follow the curvature of the uterine horns and thus reach the utero-tubal junction (UTJ). After expulsion of the inseminate with 0.7 or 1.7 ml of air, 19.0% of the insemination dose remained in the insemination catheter. Sperm loss can be diminished to 9.0% of the original insemination dose when the insemination catheter is flushed with 0.1 ml of air, followed by 0.6 ml of physiological saline solution. No toxic effect of the insemination catheter on sperm quality or fertilizing capacity was found. In the field trial, sperm were inseminated in dairy cattle which were divided in three groups. The first group was inseminated in the uterine body with the conventional insemination device, the second group in the uterine body with the Ghent device, and the third group in the tip of both uterine horns with the Ghent device. Each insemination was performed with 10 x 10(6) to 15 x 10(6) frozen-thawed spermatozoa. The pregnancy rates (PRs) were significantly affected by the insemination technique (P = 0.02), by the inseminator (P = 0.01), by heifer or cow (P < 0.01), and by the insemination number (P < 0.01). Pregnancy rates obtained with the conventional insemination device (57.6%) were significantly better than those obtained with the Ghent device in the uterine body (52.7%) (P < 0.01), but did not differ significantly from those obtained after deep insemination into both uterine horns (53.8%) (P = 0.27). It can be concluded that the Ghent device is suitable for utero-tubal junction insemination of dairy cattle under field conditions. Whether the Ghent device is also suitable for insemination with lower insemination doses is at present under investigation.  相似文献   

14.
Diketopyrrolopyrrole (DPP)‐conjugated polymers are a versatile class of semiconductors for application in organic solar cells because of their tunable optoelectronic properties. A record power conversion efficiency (PCE) of 9.4% was recently achieved for DPP polymers, but further improvements are required to reach true efficiency limits. Using five DPP polymers with different chemical structures and molecular weights, the device performance of polymer:fullerene solar cells is systematically optimized by considering device polarity, morphology, and light absorption. The polymer solubility is found to have a significant effect on the optimal device polarity. Soluble polymers show a 10–25% increase in PCE in inverted device configurations, while the device performance is independent of device polarity for less soluble DPP derivatives. The difference seems related to the polymer to fullerene weight ratio at the ZnO interface in inverted devices, which is higher for more soluble DPP polymers. Optimization of the nature of the cosolvent to narrow the fibril width of polymers in the blends toward the exciton diffusion length enhances charge generation. Additionally, the use of a retroreflective foil increases absorption of light. Combined, the effects afford a PCE of 9.6%, among the highest for DPP‐based polymer solar cells.  相似文献   

15.
Wearable electronics suffer from severe power shortage due to limited working time of Li‐ion batteries, and there is a desperate need to build a hybrid device including energy scavenging and storing units. However, previous attempts to integrate the two units are mainly based on simple external connections and assembly, so that maintaining small volume and low manufacturing cost becomes increasingly challenging. Here a convoluted power device is presented by hybridizing internally a solid Li‐ion battery (SLB) and a triboelectric nanogenerator (TENG), so that the two units are one inseparable entity. The fabricated device acts as a TENG that can deliver a peak output power of 7.4 mW under a loading resistance of 7 MΩ, while the device also acts as an SLB to store the obtained electric energy. The device can be mounted on a human shoe to sustainably operate a green light‐emitting diode, thus demonstrating potential for self‐powered wearable electronics.  相似文献   

16.
Acoustic pulses generated by an electrical discharge (pulsed acoustics) were investigated as a means for biofouling control in two test formats, viz. a 5/8" outside diameter titanium tube and a mockup heat exchanger. The pulsed acoustic device, when operated at 17 kV, demonstrated 95% inhibition of microfouling over a 20 ft length of titanium tube over a 4-week period, comparable to chlorination in combination with a high-velocity flush. The pulsed acoustic device inhibited microfouling over a downstream distance of 15 ft, therefore, a single pulsed acoustic device is theoretically capable of protecting at least 30 ft of tube from microfouling (15 ft on either side of the device). A correlation between acoustic intensity in the frequency range 0.01-1 MHz and the level of biofouling inhibition was observed. The threshold acoustic intensity for microfouling inhibition was determined for this frequency range. It was also observed that the orientation of the device is critical to obtaining microfouling inhibition.  相似文献   

17.
This article deals with the euthanasia debate in light of new life‐sustaining technologies such as the left ventricular assist device (LVAD). The question arises: does the switching off of a LVAD by a doctor upon the request of a patient amount to active or passive euthanasia, i.e. to ‘killing’ or to ‘letting die’? The answer hinges on whether the device is to be regarded as a proper part of the patient's body or as something external. We usually regard the switching off of an internal device as killing, whereas the deactivation of an external device is seen as ‘letting die’. The case is notoriously difficult to decide for hybrid devices such as LVADs, which are partly inside and partly outside the patient's body. Additionally, on a methodological level, I will argue that the ‘ontological’ arguments from analogy given for both sides are problematic. Given the impasse facing the ontological arguments, complementary phenomenological arguments deserve closer inspection. In particular, we should consider whether phenomenologically the LVAD is perceived as a body part or as an external device. I will support the thesis that the deactivation of a LVAD is to be regarded as passive euthanasia if the device is not perceived by the patient as a part of the body proper.  相似文献   

18.
19.
When using continuous passive motion (CPM) devices, appropriate setting of the device and positioning of the patient are necessary to obtain maximum range of motion (ROM). In this study, the ROMs in both the knee joint and CPM device during CPM treatment were measured using a motion analysis system for three different CPM devices. Additionally, the trajectories of the angles at the knee for hip joint misalignments were evaluated using kinematic models of the three CPM devices. The results showed that discrepancies in ROM between the knee joints and the CPM device settings during CPM treatment were revealed regardless of the CPM device and that the effect of misalignment is dependent on the design of the CPM device. The present technology could be applied for the development of a better design configuration for the CPM device to reduce the discrepancy in ROM at the knee joint.  相似文献   

20.
When using continuous passive motion (CPM) devices, appropriate setting of the device and positioning of the patient are necessary to obtain maximum range of motion (ROM). In this study, the ROMs in both the knee joint and CPM device during CPM treatment were measured using a motion analysis system for three different CPM devices. Additionally, the trajectories of the angles at the knee for hip joint misalignments were evaluated using kinematic models of the three CPM devices. The results showed that discrepancies in ROM between the knee joints and the CPM device settings during CPM treatment were revealed regardless of the CPM device and that the effect of misalignment is dependent on the design of the CPM device. The present technology could be applied for the development of a better design configuration for the CPM device to reduce the discrepancy in ROM at the knee joint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号