首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aberrant Wnt/β-catenin signaling following loss of the tumor suppressor adenomatous polyposis coli (APC) is thought to initiate colon adenoma formation. Considerable evidence for this model has come from mouse models of Apc truncation where nuclear β-catenin is detectable soon after loss of Apc. However, examination of tumors from familial adenomatous polyposis coli (FAP) patients has failed to confirm the presence of nuclear β-catenin in early lesions following APC loss despite robust staining in later lesions. This observation presents the possibility that colon adenomas arise through a β-catenin-independent function of APC. Additionally, there is a well established role for inflammation and specifically COX-2 and prostaglandin E2 in the progression of colorectal cancer. Here we review the current literature regarding the functions of APC in regulating WNT/β-catenin signaling as well as its control of intestinal cell fate and differentiation. Further, we provide a brief commentary on our current understanding of the role that inflammation plays in colorectal tumorigenesis and how it fits in with APC dysfunction. Though there are currently contrasting models to explain colon tumorigenesis, our goal is to begin to reconcile data from multiple different model systems and provide a functional view into the initiation and progression of colon cancer.  相似文献   

2.
3.
4.
Colorectal cancer still represents one of the most common causes of morbidity and mortality among Western populations. The adenomatous polyposis coli (APC) gene, originally identified as the gene responsible for familial adenomatous polyposis (FAP), an inherited predisposition to multiple colorectal tumors, is now considered as the true "gatekeeper" of colonic epithelial proliferation. It is mutated in the vast majority of sporadic colorectal tumors, and inactivation of both APC alleles occurs at early stages of tumor development in man and mouse. The study of FAP has also led to one of the most consistent genotype-phenotype correlations in hereditary cancer. However, great phenotypic variability is still observed not only among carriers of the identical APC mutation from unrelated families but also from within the same kindred. The generation of several mouse models carrying specific Apc mutations on the same inbred genetic background has confirmed the genotype-phenotype correlations initially established among FAP patients, as well as provided important insights into the mechanisms of colorectal tumor formation. Here we review the major features of the available animal models for FAP and attempt the formulation of a hypothetical model for APC-driven tumorigenesis based on the observed genetic and phenotypic variability in mouse and man.  相似文献   

5.
6.
家族性腺瘤息肉病(FAP)是第二常见的遗传性结直肠癌综合征,多在青春期发病,发病率约1/10000,主要临床表现为大肠中多发的腺瘤性息肉,是一种结直肠癌的癌前病变,如果不予治疗,几乎100%的患者会发展成为结直肠癌。一直以来,FAP被认为是一种常染色体显性遗传疾病,发病由APC基因胚系突变引起。根据临床特点的不同,FAP患者可以分为经典型FAP(CFAP)和轻表型FAP(AFAP)。然而近年来,在一些无APC基因胚系突变的FAP患者中发现了Mut YH基因的双等位基因突变。这种由于Mut YH基因双等位基因突变而无APC生殖突变所引起的临床综合征定义为Mut YH基因相关性息肉病[2](MAP)。MAP为常染色体隐性遗传,是一种特殊类型的FAP。另外,很多研究表明,APC基因的突变位点与结肠腺瘤病的严重程度、癌变的风险程度和某些肠外表现相关。MAP的发现和对FAP基因型-表型相关性的研究,完善了对FAP遗传病因学的认识,对于FAP患者及高危亲属的合理防治和预后具有重要的意义。  相似文献   

7.
Inherited mutations of the APC gene predispose carriers to multiple adenomatous polyps of the colon and rectum and to colorectal cancer. Mutations located at the extreme 5' end of the APC gene, however, are associated with a less severe disease known as attenuated adenomatous polyposis coli (AAPC). Many individuals with AAPC develop relatively few colorectal polyps but are still at high risk for colorectal cancer. We report here the identification of a 5' APC germline mutation in five separately ascertained AAPC families from Newfoundland, Canada. This disease-causing mutation is a single basepair change (G to A) in the splice-acceptor region of APC intron 3 that creates a mutant RNA without exon 4 of APC. The observation of the same APC mutation in five families from the same geographic area demonstrates a founder effect. Furthermore, the identification of this germline mutation strengthens the correlation between the 5' location of an APC disease-causing mutation and the attenuated polyposis phenotype.  相似文献   

8.
Familial adenomatous polyposis (FAP) is an inherited predisposition to colorectal cancer characterized by the development of numerous adenomatous polyps predominantly in the colorectal region. Germline mutations in the adenomatous polyposis coli (APC) gene are responsible for most cases of FAP. Mutations at the 5′ end of APC are known to be associated with a relatively mild form of the disease, called attenuated adenomatous polyposis coli (AAPC). We identified a frameshift mutation in the 3′ part of exon 15, resulting in a stop codon at 1862, in a large Dutch kindred with AAPC. Western blot analysis of lymphoblastoid cell lines derived from affected family members from this kindred, as well as from a previously reported Swiss family carrying a frameshift mutation at codon 1987 and displaying a similar attenuated phenotype, showed only the wild-type APC protein. Our study indicates that chain-terminating mutations located in the 3′ part of APC do not result in detectable truncated polypeptides and we hypothesize that this is likely to be the basis for the observed AAPC phenotype. Received: 18 June 1996 / Revised: 8 July 1996  相似文献   

9.
The tumor suppressor adenomatous polyposis coli (APC) is mutated in sporadic and familial colorectal tumors. APC stimulates the activity of the Cdc42- and Rac1-specific guanine nucleotide exchange factor Asef and promotes the migration and invasion of colorectal tumor cells. Furthermore, Asef is overexpressed in colorectal tumors and is required for colorectal tumorigenesis. It is also known that NOTCH signaling plays critical roles in colorectal tumorigenesis and fate determination of intestinal progenitor cells. Here we show that NOTCH3 up-regulates Asef expression by activating the Asef promoter in colorectal tumor cells. Moreover, we demonstrate that microRNA-1 (miR-1) is down-regulated in colorectal tumors and that miR-1 has the potential to suppress NOTCH3 expression through direct binding to its 3’-UTR region. These results suggest that the miR-1-NOTCH3-Asef pathway is important for colorectal tumor cell migration and may be a promising molecular target for the treatment of colorectal tumors.  相似文献   

10.
Mutations in the adenomatous polyposis coli (APC) gene are responsible for the disease familial adenomatous polyposis (FAP), a dominantly inherited predispostion to colorectal cancer. The most common extra-colonic manifestation is congenital hypertrophy of the retinal pigment epithelium (CHRPE), expressed in up to 90% of FAP kindreds. Chain-terminating APC mutations were characterised in 26 unrelated FAP patients. Results show that CHRPE expression is determined by the length of truncated protein product. CHRPE is therefore the first extracolonic manifestation of FAP to be shown to be under the control of the APC mutation site and should facilitate the detection of constitutional APC mutations in FAP kindreds.  相似文献   

11.
The Wnt connection to tumorigenesis   总被引:26,自引:0,他引:26  
Wnt signaling has been identified as one of the key signaling pathways in cancer, regulating cell growth, motility and differentiation. Because of its widespread activation in diverse human tumor diseases, the Wnt pathway has gained considerable and growing interest in tumor research over recent years. Evidence that altered Wnt signaling is important for human tumor development came from three major findings: (i) the tumor suppressor adenomatous polyposis coli (APC) binds to the Wnt pathway component beta-catenin and is involved in its degradation, (ii) mutations of APC in colon tumors lead to stabilization of the beta-catenin protein and (iii) tumor-associated mutations of beta-catenin in colorectal cancer as well as in other tumor types lead to its stabilisation, qualifying beta-catenin as a proto-oncogene. Here we will describe the biochemical interactions which shape the Wnt pathway and focus on its role in tumorigenesis.  相似文献   

12.
Cho KH  Baek S  Sung MH 《FEBS letters》2006,580(15):3665-3670
Mutations in components of the Wnt/beta-catenin pathway are observed to be the earliest initiating event for most colorectal tumors. The majority of the mutations occur in the tumor suppressor adenomatous polyposis coli (APC), even though there are other genes that are capable of modulating the pathway activity. Moreover, the specific APC mutations associated in colon cancer indicate the possibility that the tumor selects for certain truncated forms of APC that partially retain its function, namely, inhibition of beta-catenin. We estimated the effects of various mutations in APC and other known mutations using a recent mathematical model of the Wnt pathway that was constructed to represent the conserved core molecular events. We provide evidence that APC mutations are selected not based on the maximal level of beta-catenin but rather based on distinct state of activity that appears to be optimal for the tissue-specific tumorigenesis. This optimal level is determined by balancing beta-catenin signaling and the induction of Axin2 that acts as a potent negative feedback. The predominant pattern of APC mutations may provide synergistic oncogenic effects that promote colorectal tumorigenesis: the optimal signaling for cell survival and renewal, disrupted cell adhesion, chromosomal instability, and altered asymmetric division of stem cells.  相似文献   

13.
Germ-line and somatic truncating mutations of the APC gene are thought to initiate colorectal tumor formation in familial adenomatous polyposis syndrome and sporadic colorectal carcinogenesis, respectively. Recently, an isoleucine-->lysine polymorphism at codon 1307 (I1307K) of the APC gene has been identified in 6%-7% of the Ashkenazi Jewish population. To assess the risk of this common APC allelic variant in colorectal carcinogenesis, we have analyzed a large cohort of unselected Ashkenazi Jewish subjects with adenomatous polyps and.or colorectal cancer, for the APC I1307K polymorphism. The APC I1307K allele was identified in 48 (10.1%) of 476 patients. Compared with the frequency in two separate population control groups, the APC I1307K allele is associated with an estimated relative risk of 1.5-1.7 for colorectal neoplasia (both P=.01). Furthermore, compared with noncarriers, APC I1307K carriers had increased numbers of adenomas and colorectal cancers per patient (P=.03), as well as a younger age at diagnosis. We conclude that the APC I1307K variant leads to increased adenoma formation and directly contributes to 3%-4% of all Ashkenazi Jewish colorectal cancer. The estimated relative risk for carriers may justify specific clinical screening for the 360,000 Americans expected to harbor this allele, and genetic testing in the setting of long-term-outcome studies may impact significantly on colorectal cancer prevention in this population.  相似文献   

14.
15.
Familial adenomatous polyposis (FAP) is a premalignant disease inherited as an autosomal dominant trait, characterized by hundreds to thousands of polyps in the colorectal tract. Recently, the syndrome has been shown to be caused by mutations in the APC (adenomatous polyposis coli) gene located on chromosome 5q21. We studied two families that both presented a phenotype different than that of the classical form of FAP. The most important findings observed in these two kindreds are (a) low and variable number of colonic polyps (from 5 to 100) and (b) a slower evolution of the disease, with colon cancer occurring at a more advanced age than in FAP in spite of the early onset of intestinal manifestations. To determine whether mutations of the APC gene are also responsible for this variant syndrome, linkage studies were performed by using a series of markers both intragenic and tightly linked to the APC gene. The results provide evidence for exclusion of the APC gene as the cause of the variant form of polyposis present in the two families described.  相似文献   

16.
Germ-line mutations in the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis (FAP). Genotype-phenotype correlation studies in patients with FAP have demonstrated associations of certain variants of the disease with mutations at specific sites within the APC gene. In a large FAP family, we identified a frameshift mutation located in the alternatively spliced region of exon 9. Phenotypic studies of affected family members showed that the clinical course of FAP was delayed, with gastrointestinal symptoms and death from colorectal carcinoma occurring on average 25 and 20 years later than usual, respectively. The numbers of colorectal adenomas differed markedly among affected individuals and the location of colorectal cancer lay frequently in the proximal colon. Our findings suggest that the exon 9 mutation identified in the pedigree is associated with late onset of FAP. The atypical phenotype may be explained by the site of the mutation in the APC gene. Analysis of the APC protein product indicated that the exon 9 mutation did not result in a detectable truncated APC protein. Given the location of the mutation within an alternatively spliced exon of APC, it is conceivable that normal APC proteins are produced from the mutant allele by alternative splicing.  相似文献   

17.
Adenomatous polyps are an intermediate in the pathway to colon carcinoma. An inherited disorder, familial adenomatous polyposis coli (APC), is characterized by hundreds to thousands of adenomatous polyps. A previously reported family had colon cancer associated with a low average but highly heterogenous number of colonic polyps, this phenotype mapped to the APC locus on 5q. Four new families have been ascertained in which the phenotypic pattern was different from classical polyposis but similar to that of the "prototype" kindred reported earlier. By multilocus linkage analysis, the gene responsible for the disease phenotype was mapped, with a high level of confidence, to the APC locus in two of the four families with the attenuated or variant form of polyposis (AAPC); the results for the two remaining kindreds were inconclusive. A combined maximum LOD score of approximately 7.6 at a recombination fraction of 0 was obtained when the results were summed over the four pedigrees with markers closest to the APC locus. The establishment of genetic linkage in such families may point to the APC locus as having a more significant role in inherited predispositions to colorectal cancer than was previously thought.  相似文献   

18.
Colorectal cancer is the second most common cause of cancer mortality in the western world. Colorectal cancer has been well studied, and the genetic steps involved in the adenoma to carcinoma sequence have been well elucidated. The first genetic alteration, found in 85% of adenomas, are mutations in the adenomatous polyposis coli (APC) gene. However, the consequences of this and the exact function of APC in the colon is not fully understood. It has been suggested that APC could function through its regulation of beta-catenin, an ubiquitous cytoskeletal protein with multiple binding specificities resulting in diverse functions including cell growth, adhesion, and migration. Any change in these associations may play a role in colorectal cancer development and progression.  相似文献   

19.
Germline mutations of the adenomatous polyposis coli ( APC) gene cause familial adenomatous polyposis (FAP), an autosomal, dominantly inherited disease that predisposes patients to colorectal cancer. The APC gene is composed of 15 coding exons and encodes an open reading frame of 8.5 kb. The 3' 6.5 kb of the APCopen reading frame is encoded by a single exon, exon 15. Most identified APC mutations are at the 5' half of the APC open reading frame and are nucleotide substitutions and small deletions or insertions that result in truncation of the APC protein. Very few well-characterized gross alterations of APC have been reported. Patients with FAP typically develop hundreds to thousands of colorectal tumors beginning in their adolescence. A subgroup of patients with FAP who develop fewer tumors at an older age have what is called attenuated FAP (AFAP). Accumulating evidence indicates that patients carrying germline APC mutations in the first four coding exons, in the alternatively spliced region of exon 9, or in the 3' half of the coding region usually develop AFAP. We characterized two germline APC alterations that deleted the entire APC exon 15 as the result of 56-kb and 73-kb deletions at the APC locus. A surprising finding was that one proband had the typical FAP phenotype, whereas the other had a phenotype consistent with that of AFAP.  相似文献   

20.
Summary Familial adenomatous polyposis (FAP), which includes familial polyposis coli (FPC) and the Gardner syndrome (GS), is a genetically determined premalignant disease of the colon inherited by a locus (APC) mapping within 5q15–q22. To elucidate the role of 5q loss in FAP tumorigenesis, we analysed 51 colorectal tumors and seven desmoids from 19 cases of FPC and five GS patients, as well as 15 sporadic colon cancers. RFLP analysis revealed a high incidence of allelic deletion in hereditary colon cancers as well as in sporadic colon cancers with a peak at the APC locus. APC loss resulted primarily from interstitial deletion or mitotic recombination. Combined tumor and pedigree analysis in a GS family revealed loss of normal 5q alleles in three tumors, including a desmoid tumor, which suggests the involvement of hemizygosity or homozygosity of the defective APC gene in colon carcinogenesis and, possibly, in extracolonic neoplasms associated with FAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号