首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We explored whether a variation in predation and habitat complexity between conspecific populations can drive qualitatively different numerical dynamics in those populations. We considered two disjunct populations of the least killifish, Heterandria formosa, that exhibit long-term differences in density, top fish predator species, and dominant aquatic vegetation. Monthly censuses over a 3-year period found that in the higher density population, changes in H. formosa density exhibited a strong negative autocorrelation structure: increases (decreases) at one census tended to be followed by decreases (increases) at the next one. However, no such correlation was present in the lower density population. Monthly census data also revealed that predators, especially Lepomis sp., were considerably more abundant at the site with lower H. formosa densities. Experimental studies showed that the predation by Lepomis gulosus occurred at a much higher rate than predation by two other fish and two dragonfly species, although L. gulosus and L. punctatus had similar predation rates when the amount of vegetative cover was high. The most effective predator, L. gulosus, did not discriminate among life stages (males, females, and juveniles) of H. formosa. Increased predation rates by L. gulosus could keep H. formosa low in one population, thereby eliminating strong negative density-dependent regulation. In support of this, changes in H. formosa density were positively correlated with changes in vegetative cover for the population with a history of lower density, but not for the population with a history of higher density. Our results are consistent with the hypothesis that the observed differences among natural populations in numerical abundance and dynamics are caused in part by the differences in habitat complexity and the predator community.  相似文献   

2.
Alien predators have been recognised as one possible cause for amphibian declines around the world, but little is known of habitat-mediated predation impacts especially on adult amphibians. We studied common frog Rana temporaria under American mink Mustela vison predation in the outer archipelago of the Baltic Sea, south-western Finland. Using egg batches as an index of breeding frog female numbers we compared frog numbers and densities between a large, long-term mink-removal area and a comparable control area. Frog numbers in the removal area were at least 2.7-fold higher than those in the control area. In the presence of mink, frog densities increased with the amount of vegetation cover on the islands, indicating that mink predation affected frog densities especially on less-vegetated islands. An opposite trend appeared to be true for frogs in the mink-removal area, where other predators like snakes could induce a decline of frog densities on more vegetated islands. Shrub or grass vegetation seems to provide frogs shelter against alien mink predation. Our result highlights the importance of landscape-level habitat management as a conservation tool for amphibian populations.  相似文献   

3.
Studies of the adaptive significance of variation among conspecific populations often focus on a single ecological factor. However, habitats rarely differ in only a single ecological factor, creating a challenge for identifying the relative importance of the various ecological factors that might be maintaining local adaptation. Here we investigate the ecological factors associated with male body shape variation among nine populations of the poeciliid fish, Heterandria formosa, from three distinct habitats and combine those results with a laboratory study of three of those populations to assess the contributions of genetic and environmental influences to shape variation. Field‐collected animals varied principally in three ways: the orientation of the gonopodium, the intromittent organ; the degree of body depth and streamlining; and the shape of the tail musculature. Fish collected in the spring season were larger and had a more anteriorly positioned gonopodium than fish collected in autumn. Fish collected from lotic springs were larger and more streamlined than those collected from lentic ponds or tidal marshes. Some of the variation in male shape among populations within habitats was associated with population‐level variation in species richness, adult density, vegetative cover, predation risk, and female standard length. Population‐level differences among males in body size, position of the gonopodium, and shape of the tail musculature were maintained among males reared in a common environment. In contrast, population variation in the degree of streamlining was eliminated when males were reared in a common environment. These results illustrate the complicated construction of multivariate phenotypic variation and suggest that different agents of selection have acted on different components of shape.  相似文献   

4.
Summary Both habitat structure and risk of predation are thought to influence rodent community composition in different habitats, but experiments on the degree to which these factors determine the use of habitat by rodents are lacking. I sought to discover (1) if cover density altered habitat choice and (2) if cover density affected the vulnerability to predators of two rodents, a habitat specialist and a habitat generalist. In laboratory experiments, the habitat specialist, the red-backed vole (Clethrionomys gapperi), preferred greater densities of both vertical (wall) and horizontal (ceiling) cover. The habitat generalist, the deer mouse (Peromyscus maniculatus), also preferred greater densities of vertical and horizontal cover, but its preferences were weaker and more inconsistent than those of C. gapperi In tests of vulnerability to domestic ferrets, C. gapperi were more vulnerable in arenas with less vertical cover, while P. maniculatus did not differ in vulnerability between the two vertical cover densities used. Vulnerability to predators in differing densities of horizontal cover was not tested because of the reduced differences in preference for this cover type between the rodent species. Risk of predation is one explanation for C. gapper's inherent preference for denser cover.  相似文献   

5.
ABSTRACT The American alligator (Alligator mississippiensis) has made a remarkable recovery throughout its range during the last half-century. In Texas, USA, current inland alligator population and harvest management strategies rely on generalized and often site-specific habitat and population data generated from coastal populations, because it is assumed that habitat and demographic similarities exist between inland and coastal populations. These assumptions have not been verified, however, and no studies have specifically examined inland alligator habitat use in Texas. We quantified alligator habitat use in East Texas during 2003–2004 to address this information gap and to facilitate development of regionally specific management strategies. Although habitat was variable among study areas, alligators used habitats with >50% open water, substantial floating vegetation, and emergent vegetation close (<12 m) to dry ground and cover. Adults used habitats further from dry ground and cover, in open water (75–85%), with less floating vegetation (6–22%) than did subadults, which used habitats that were closer to dry ground and cover, with less open water (52–68%), and more floating vegetation (8–40%). Although habitat use mirrored coastal patterns, we estimated alligator densities to be 3–5 times lower than reported in coastal Texas, likely a result of inland habitat deviations from optimal coastal alligator habitat, particularly in the preponderance of open water and floating vegetation. Our findings that 1) inland habitats varied among sites and did not exactly match assumed optimal coastal habitats, 2) alligators used these inland habitats slightly differently than coastal areas, and 3) inland alligator densities were lower than coastal populations, all highlight the need for regionally specific management approaches. Because alligator populations are influenced by habitat quality and availability, any deviations from assumed optimal habitat may magnify harvest impacts upon inland populations.  相似文献   

6.
Patch size is one of the most important factors affecting the distribution and abundance of species, and recent research has shown that patch size is an important niche dimension affecting community structure in aquatic insects. Building on this result, we examined the impact of patch size in conjunction with presence of larval anurans on colonization by aquatic insects. Hyla chrysoscelis (Cope''s gray treefrog) larvae are abundant and early colonists in fishless lentic habitats, and these larvae can fill multiple ecological roles. By establishing larvae in mesocosms prior to colonization, we were able to assess whether H. chrysoscelis larvae have priority effects on aquatic insect assemblages. We conducted a series of three experiments in naturally colonized experimental landscapes to test whether (1) H. chrysoscelis larval density affects insect colonization, (2) variation in patch size affects insect colonization, and (3) the presence and larval density of H. chrysoscelis shift colonization of insects between patches of different size. Larval density independently had almost no effect on colonization, while patch size had species‐specific effects consistent with prior work. When larvae and patch size were tested in conjunction, patch size had numerous, often strong, species‐specific effects on colonization; larval density had effects largely limited to the assemblages of colonizing beetles and water bugs, with few effects on individual species. Higher larval densities in large mesocosms shifted some insect colonization to smaller patches, resulting in higher beta diversity among small patches in proximity to high density large mesocosms. This indicates establishing H. chrysoscelis larvae prior to insect colonization can likely create priority effects that slightly shape insect communities. Our results support the importance of patch size in studying species abundances and distributions and also indicate that colonization order plays an important role in determining the communities found within habitat patches.  相似文献   

7.
Predation among aquatic invertebrate predators can have important effects on patterns of exclusion and coexistence in aquatic habitats, especially if these predators also act as intraguild predators. Such patterns may be explained by variation in predator foraging mode and in the extent and overlap of habitat use. Predaceous diving beetles (Coleoptera: Dytiscidae) are abundant in isolated bodies of water and are effective predators on many aquatic organisms, including other dytiscids. The under-investigated role of hunting behavior and habitat use in altering outcomes of predation under different plant densities may offer insights into patterns of coexistence among larval dytiscids. I performed experiments that quantified behavior of larvae of three common genera of dytiscids that share common prey and then measured predation among genera in the presence or absence of aquatic plants. Behavioral analyses concluded that there were significant differences in foraging modes, with Dytiscus primarily exhibiting sit-and-wait tactics, Graphoderus engaging in active, open water searching, and Rhantus displaying combinations of these behaviors. Predation among larvae was common and occurred when predators were larger than the prey, with no indication of prey preference. Incidence of predation among generic combinations depended on the presence of plants and appeared to be related to behavioral differences among genera. The presence or absence of plants and differences in larval behavior may help to mitigate predation by reducing negative interactions in natural aquatic systems. These results have implications for IGP interactions and may be one of the explanations for the observed richness of this group of predators within aquatic habitats.  相似文献   

8.
Habitat heterogeneity might promote the abundance and richness of natural enemies potentially leading to higher top-down pressure on herbivorous insects. Heterogeneous habitats could provide natural enemies with more abundant and alternative resources and a greater variety of micro-habitats. Natural enemies with different searching behaviours, e.g. generalists and specialists, could be affected in different ways by habitat heterogeneity, thus affecting their pressure on herbivorous insects.To understand how top-down pressure on herbivorous insects is promoted by habitat heterogeneity, it is crucial to investigate which parameters contributing to habitat heterogeneity affect not only the abundance and richness but also the searching behaviour of different natural enemies. We investigated the relationship between heterogeneity in forest habitats and the top-down pressure exerted by generalist predators and specialist parasitoids on larvae of the European pine sawfly (Neodiprion sertifer).We used forest stands with endemic or epidemic densities of resident sawfly populations. Within each stand we selected experimental trees to create variation in tree species diversity and density in their surrounding area, i.e. habitat heterogeneity. We found that a higher tree density increased the predation by generalists on sawfly larvae in stands with endemic sawfly densities. Parasitoids were less successful in stands with endemic sawfly densities. Total mortality depended on stand character and the proportion of pine around experimental trees.The explained variation in the response variables by the models is relatively low, indicating that other measures of heterogeneity, like understory vegetation and presence of dead wood could contribute to the observed variation. Also, interference between generalist and specialist enemies could affect the realized mortality pressure. Thus, the effect of tree species diversity in combination with these other measures of heterogeneity needs to be recognized to promote the presence and the activity of natural enemies in managed habitats.  相似文献   

9.
Many populations have consistently biased adult sex ratios with important demographic and evolutionary consequences. However, geographical variation, the mechanisms, temporal dynamics and predictors of biased sex ratios are notoriously difficult to explain. We studied 334 wild populations of four species of African annual fish (Nothobranchius furzeri, N. kadleci, N. orthonotus, N. rachovii) across their ranges to compare their adult sex ratio, its seasonal dynamics, interpopulation variation and environmental predictors. Nothobranchius populations comprise a single age cohort and inhabit discrete isolated pools, with wide-ranging environmental conditions (habitat size, water turbidity, structural complexity, predators), making them ideal to study adult sex ratio variation. In captivity adult sex ratios were equal. In natural populations, adult sex ratios were biased 1:2 toward females in three study species while N. kadleci had sex ratios at unity. There was a decline in the proportion of males with age in one species, but not in the other species, implying most severe male mortality early after maturation, declining later perhaps with a decrease in male abundance. In general, the populations at vegetated sites had relatively more males than populations at sites with turbid water and little vegetation. Selective avian predation on brightly coloured male fish likely contributed to female dominance and vegetation cover may have protected males from birds. In addition, an aquatic predator, a large belastomid hemipteran, decreased the proportion of males in populations, possibly due to greater male activity rather than conspicuous colouration. Alternative explanations for a sex ratio bias, stemming from male–male contests for matings, are discussed. We conclude that the effect of environmental conditions on adult sex ratio varies dramatically even in closely related and ecologically similar sympatric species. Therefore, difficulties in explaining the ecological predictors of sex ratio biases are likely due to high stochasticity rather than limited sample size.  相似文献   

10.
Plaice (Pleuronectes platessa) nursery grounds on the Swedish west coast have been subject to increasing cover of annual green macroalgae during recent years, with growth of algae starting at the time of plaice settlement in April to May. A laboratory experiment was performed to investigate how the vulnerability to predation of metamorphosing plaice was affected by the presence of filamentous algae. Predation by shrimps (Crangon crangon) on settling plaice larvae was higher on sand than among algae, whereas predation by crabs (Carcinus maenas) was unaffected by habitat type, suggesting a lower overall mortality of plaice in the vegetated habitat. When predators and prey were presented with a combination of the two habitats, predation by shrimps was as high as that in the sand treatment alone, whereas predation by crabs was lower than that in the two treatments with one habitat. Based on these results, an additional experiment was performed, investigating the functional response of shrimps to six densities of juvenile plaice in a sand habitat with alternative prey present. The proportional mortality of juvenile plaice (12-16 mm total length (TL)) was density-dependent and was best described by a type III (sigmoid) functional response of the predatory shrimps. The results suggested that the combined predation pressure from shrimps and crabs was lower among algae than on sand, but settling plaice and predatory shrimps chose the sand habitat. Plaice densities in the sigmoid part of the obtained functional response curve represented normal to high field densities of plaice on the Swedish west coast, suggesting that shrimp predation could have a stabilising effect on plaice recruitment. The formation of macroalgae mats could therefore lead to a concentration of plaice juveniles in the remaining sand habitat and increased mortality through density-dependent predation by shrimps.  相似文献   

11.
Chipps SR  Dunbar JA  Wahl DH 《Oecologia》2004,138(1):32-38
Bluegill sunfish (Lepomis macrochirus) are known to diversify into two forms specialized for foraging on either limnetic or littoral prey. Because juvenile bluegills seek vegetative cover in the presence of largemouth bass (Micropterus salmoides) predators, natural selection should favor the littoral body design at size ranges most vulnerable to predation. Yet within bluegill populations, both limnetic and littoral forms occur where vegetation and predators are present. While adaptive for foraging in different environments, does habitat-linked phenotypic variation also influence predator evasiveness for juvenile bluegills? We evaluate this question by quantifying susceptibility to predation for two groups of morphologically distinct bluegills; a limnetic form characteristic of bluegills inhabiting open water areas (limnetic bluegill) and a littoral form characteristic of bluegills inhabiting dense vegetation (littoral bluegill). In a series of predation trials, we found that bluegill behaviors differed in open water habitat but not in simulated vegetation. In open water habitat, limnetic bluegills formed more dense shoaling aggregations, maintained a larger distance from the predator, and required longer amounts of time to capture than littoral bluegill. When provided with simulated vegetation, largemouth bass spent longer amounts of time pursuing littoral bluegill and captured significantly fewer littoral bluegills than limnetic fish. Hence, morphological and behavioral variation in bluegills was linked to differential susceptibility to predation in open water and vegetated environments. Combined with previous studies, these findings show that morphological and behavioral adaptations enhance both foraging performance and predator evasiveness in different lake habitats.  相似文献   

12.
Environmental disturbances such as deforestation, urbanization or pollution have been widely acknowledged to play a key role in the emergence of many infectious diseases, including mosquito-borne viruses. However, we have little understanding of how habitat isolation affects the communities containing disease vectors. Here, we test the effects of habitat type and isolation on the colonization rates, species richness and abundances of mosquitoes and their aquatic predators in water-filled containers in northwestern Thailand. For eight weeks water-filled containers were monitored in areas containing forest, urban and agricultural habitats and mixtures of these three. Mosquito larvae of the genera Aedes and Culex appeared to be differentially affected by the presence of the dominant predator; Toxorhynchites splendens (Culicidae). Therefore, a predation experiment was conducted to determine predator response to prey density and its relative effects on different mosquito prey populations. Colonization rates, species richness and abundances of mosquito predators were strongly related to forest habitat and to the distance from other aquatic habitats. Areas with more tree cover had higher predator species richness and abundance in containers. Containers that were close to surface water were more rapidly colonized than those further away. In all habitat types, including urban areas, when predators were present, the number of mosquito larvae was much lower. Containers in urban areas closer to water-bodies, or with more canopy cover, had higher predator colonization rates and species richness. T. splendens (Culicidae) preyed on the larvae of two mosquito genera at different rates, which appeared to be related to prey behaviour. This study shows that anthropogenic landscape modification has an important effect on the natural biological control of mosquitoes. Vector control programmes and urban planning should attempt to integrate ecological theory when developing strategies to reduce mosquito populations. This would result in management strategies that are beneficial for both public health and biodiversity.  相似文献   

13.
  1. The possible impact of arthropod predation on inter-population variation in adult density of a thistle-feeding lady beetle, Henosepilachna niponica (Lewis ) was evaluated by means of predator exclusion experiments conducted in the field.
  2. The population density of newly-emerged adults at one habitat in the upstream area (site F) was significantly lower than at another in the downstream area (site A) although the egg density was nearly identical in the two habitats.
  3. In the habitat with lower adult density, egg mortality was higher due to higher levels of predation. A predator exclusion experiment demonstrated that arthropod predation was the main factor causing high mortality during the immature stages, and physical factors such as heavy rains were unlikely to influence larval survivals.
  4. Earwigs, ground beetles, predaceous stink bugs, and spiders were identified as the main predators in the study area. Of these, an earwig, Anechura harmandi (Burr ) was more predominant than other predators and was significantly more abundant in the habitat with low adult densities.
  相似文献   

14.
The aims of this study were to characterise the ground-level larval habitats of the mosquito Culex quinquefasciatus, to determine the relationships between habitat characteristics and larval abundance and to examine seasonal larval-stage variations in Córdoba city. Every two weeks for two years, 15 larval habitats (natural and artificial water bodies, including shallow wells, drains, retention ponds, canals and ditches) were visited and sampled for larval mosquitoes. Data regarding the water depth, temperature and pH, permanence, the presence of aquatic vegetation and the density of collected mosquito larvae were recorded. Data on the average air temperatures and accumulated precipitation during the 15 days prior to each sampling date were also obtained. Cx. quinquefasciatus larvae were collected throughout the study period and were generally most abundant in the summer season. Generalised linear mixed models indicated the average air temperature and presence of dicotyledonous aquatic vegetation as variables that served as important predictors of larval densities. Additionally, permanent breeding sites supported high larval densities. In Córdoba city and possibly in other highly populated cities at the same latitude with the same environmental conditions, control programs should focus on permanent larval habitats with aquatic vegetation during the early spring, when the Cx. quinquefasciatus population begins to increase.  相似文献   

15.
Dispersal is a central process determining community structure in heterogeneous landscapes, and species interactions within habitats may be a major determinant of dispersal. Although the effects of species interactions on dispersal within habitats have been well studied, how species interactions affect the movement of individuals between habitats in a landscape has received less attention. We conducted two experiments to assess the extent to which predation risk affects dispersal from an aquatic habitat by a flight-capable semi-aquatic insect (Notonecta undulata). Exposure to non-lethal (caged) fish fed conspecifics increased dispersal rates in N. undulata. Moreover, dispersal rate was positively correlated with the level of risk imposed by the fish; the greater the number of notonectids consumed by the caged fish, the greater the dispersal rate from the habitat. These results suggest that risk within a habitat can affect dispersal among habitats in a landscape and thus affect community structure on a much greater scale than the direct effect of predation itself.  相似文献   

16.
Climate instability strongly affects overwintering conditions in organisms living in a strongly seasonal environment and consequently their survival and population dynamics. Food, predation and density effects are also strong during winter, but the effect of fragmentation of ground vegetation on ground-dwelling small mammals is unknown. Here, we report the results of a winter experiment on the effects of habitat fragmentation and food on experimental overwintering populations of bank voles Myodes glareolus. The study was conducted in large outdoor enclosures containing one large, two medium-sized or four small habitat patches or the total enclosure area covered with protective tall-grass habitat. During the stable snow cover of midwinter, only food affected the overwintering success, body condition, trappability and earlier onset of breeding in bank voles. However, after the snow thaw in spring, habitat fragmentation gained importance again, and breeding activities increased the movements of voles in the most fragmented habitat. The use of an open, risky matrix area increased along the habitat fragmentation. Our experiment showed that long-lasting stable snow cover protects overwintering individuals in otherwise exposed and risky ground habitats. We conclude that a stable winter climate and snow cover should even out habitat fragmentation effects on small mammals. However, along prolonged snow-free early winter and in an earlier spring thaw, this means loss of protection by snow cover both in terms of thermoregulation and predation. Thus, habitat cover is important for the survival of small ground-dwelling boreal mammals also during the non-breeding season.  相似文献   

17.
Aquatic macrophyte patches are natural features of wetland ecosystems that serve as habitat for aquatic animals. Previous studies suggest animal densities in Everglades, USA, wetlands are generally less numerous in sawgrass ridges than in deeper lily sloughs. We studied the density distribution of a population of Procambarus fallax in ridge and slough habitat types over a 2-year period, spanning two wet–dry cycles and estimated growth and survival rates under flooded conditions to understand comparative value of each to the crayfish population. Procambarus fallax individuals inhabited and recruited in both marsh habitats. During periods of high water, crayfish densities were similar in both habitats; however, densities in both habitats varied seasonally, leading us to postulate some degree of population redistribution in response to fluctuating water depths. Analysis of size distributions over time revealed juveniles in both habitats and two major recruitment periods each year; distinct juvenile cohorts were present in early winter (Nov–Dec) and mid-summer (July–Aug). An in situ experiment of juvenile growth demonstrated that slough habitat type supported faster growth over ridge habitat. To understand habitat-specific mortality risk, a tethering study during flooded conditions indicated that relative predation risk by aquatic predators was greater in sloughs for all sizes and higher for smaller individuals in both habitats. The comparative importance of ridge and slough balances growth potential and survival probability during flooded conditions. This is the first study through time and across both habitat types analyzing the distribution and size structure of P. fallax population in the Everglades.  相似文献   

18.
The spatial pattern of the small fish community was studied seasonally in 1996 in the Biandantang Lake. Based on plant cover, the lake was divided into five habitats, arranged in the order by plant structure complexity from complex to simple: Vallisneria spiralis habitat (V habitat), Vallisneria spiralis–Myriophyllum spicatum habitat (V–M habitat), Myriophyllum spicatum habitat (M habitat), Nelunbo nucefera habitat (N habitat), and no vegetation habitat (NV habitat). A modified popnet was used for quantitative sampling of small fishes. A total of 16 fish species were collected; Hypseleotris swinhonis, Ctenogobius giurinus, Pseudorasbora parva, Carassius auratus and Paracheilognathus imberis were the five numerically dominant species. In both summer and autumn, the total density of small fishes was about 10indm–2. Generally, Ctenogobius giurinus, a sedatory, benthic fish, was distributed more or less evenly among the five habitats, while the other four species had lower densities in the N habitat and NV habitat, which had the simplest structures. The distribution of the small fish species showed seasonal variations. In winter, most species concentrated in the V habitat, which had the most complex structure. In spring, the fish had low densities in the N and NV habitat, and were more or less evenly distributed in the other habitats. In summer, the fish had a low density in the NV habitat, and were evenly distributed in the other habitats. In autumn, the fish had higher densities in the V–M and M habitats than in the others. Generally, spatial overlaps between the dominant species were higher in winter than in the other seasons. It was suggested that the variations in the importance of predation risk and resource competition in habitat choice determined the seasonal changes of spatial patterns in the small fishes in the Biandantang Lake.  相似文献   

19.
Life history variation can often reflect differences in age-specific mortality within populations, with the general expectation that reproduction should be shifted away from ages experiencing increased mortality. Investigators of life history in vertebrates frequently focus on the impact of predation, but there is increasing evidence that predation may have unexpected impacts on population density that in turn prompt unexpected changes in life history. There are also other reasons why density might impact life history independently of predation or mortality more generally. We investigated the consequences of predation and density on life history variation among populations of the Pacific leaping blenny, Alticus arnoldorum. This fish from the island of Guam spends its adult life out of the water on rocks in the splash zone, where it is vulnerable to predation and can be expected to be sensitive to changes in population density that impact resource availability. We found populations invested more in reproduction as predation decreased, while growth rate varied primarily in response to population density. These differences in life history among populations are likely plastic given the extensive gene flow among populations revealed by a previous study. The influence of predation and density on life history was unlikely to have operated independently of each other, with predation rate tending to be associated with reduced population densities. Taken together, our results suggest predation and density can have complex influences on life history, and that plastic life history traits could allow populations to persist in new or rapidly changing environments.  相似文献   

20.
We studied 26 reproductive groups of swift foxes, Vulpes velox, from both high- and low-density areas during three field seasons in northwestern Texas, U.S.A., to examine whether differences in population density affect mating system and group structure. Although high- and low-density populations were only separated by 40 km and vegetation and diets were similar between sites, polygynous groups, communal denning and nonbreeding females occurred in the area of high density, whereas only monogamous pairs occurred in the area of low density. Annual survival of adult swift foxes was 66% in the area of high density, but 44% in the area of low density. Predation from coyotes, Canis latrans, was the only mortality factor that differed (P=0.01) between sites and contributed most to differences in survival. Although previous research indicated that variation in social systems among canids is related to bottom-up forces (i.e. food, habitat), the results of our study indicate that variation in social systems can also be related to top-down forces (i.e. predation, displacement by larger competitor).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号