首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This review focuses on how predator performance of the invasive largemouth bass [Micropterus salmoides (Lacepède)] has been, or will be, formed in Japanese freshwaters. Predation impacts of largemouth bass on fish communities appear pervasive in both Japanese as well as North American freshwaters. Factors affecting performance as a piscivorous predator are (1) light intensity and water clarity, (2) oxygen depletion, (3) prey size and gape size, (4) behavioral refuge of prey, (5) weed beds as refuge for prey fish, (6) interaction with bluegill. Size and behavioral refuges requirements are so rigorous that they may have evolved only in some North American prey fish species like bluegill; therefore, most Japanese native fish species are unlikely to be equipped with such refuges. However, refuge habitats like aquatic weed beds could develop in Japanese freshwaters, allowing prey fish species to survive under predation pressure. The density, architecture, and species composition of aquatic plants may affect their suitability as refuges. Studies in Japanese waters have suggested that the presence of rich aquatic vegetation or invasive bluegill in bass-introduced waters have suppressed the predation impact of largemouth bass on fish communities. In addition to these environmental factors, original genotypic and phenotypic traits of the introduced largemouth bass, and hybridization between different lineages of largemouth bass or with Florida bass [Micropterus floridanus (Lesueur)] may be involved in further adaptation of invasive largemouth bass to Japanese freshwaters.  相似文献   

2.
The role of trophic cascades in structuring freshwater communities has been extensively studied. Most of this work, however, has been conducted in oligotrophic northern lakes that contain highly vulnerable cyprinid prey: aquatic communities where trophic interactions are likely to be stronger than in many other systems. Fewer studies have been conducted in eutrophic systems or have examined the bottom-up effects of benthivorous fishes, and none have directly compared these effects to those of piscivores on ecosystem structure and function. We conducted enclosure experiments in eutrophic ponds to examine trophic effects of invasive benthivores (common carp—Cyprinus carpio L.), native piscivores (largemouth bass—Micropterus salmoides [Lacepède]), and their interactions with common centrarchid prey with well-developed anti-predatory behaviors (age-1 bluegill—Lepomis macrochirus Rafinesque and young-of-year largemouth bass). At the end of the 60-day experiment, common carp had strong bottom-up effects that increased total phosphorus and turbidity while decreasing chlorophyll a biomass and macrophyte cover that resulted in decreased macroinvertebrate biomass and also decreased growth in both juvenile largemouth bass and bluegill. Piscivorous largemouth bass, however, did not affect the survival of either planktivorous juvenile largemouth bass or bluegill. Growth of juvenile largemouth bass was also not affected, but juvenile bluegill growth was significantly diminished, possibly due to nonconsumptive effects of predation. Our results suggest that, in a centrarchid-dominated eutrophic system, top-down effects of predators are overwhelmed by common carp-mediated bottom-up effects. These bottom-up effects strongly affected multiple trophic levels, thus altering aquatic community structure and function.  相似文献   

3.
Chipps SR  Dunbar JA  Wahl DH 《Oecologia》2004,138(1):32-38
Bluegill sunfish (Lepomis macrochirus) are known to diversify into two forms specialized for foraging on either limnetic or littoral prey. Because juvenile bluegills seek vegetative cover in the presence of largemouth bass (Micropterus salmoides) predators, natural selection should favor the littoral body design at size ranges most vulnerable to predation. Yet within bluegill populations, both limnetic and littoral forms occur where vegetation and predators are present. While adaptive for foraging in different environments, does habitat-linked phenotypic variation also influence predator evasiveness for juvenile bluegills? We evaluate this question by quantifying susceptibility to predation for two groups of morphologically distinct bluegills; a limnetic form characteristic of bluegills inhabiting open water areas (limnetic bluegill) and a littoral form characteristic of bluegills inhabiting dense vegetation (littoral bluegill). In a series of predation trials, we found that bluegill behaviors differed in open water habitat but not in simulated vegetation. In open water habitat, limnetic bluegills formed more dense shoaling aggregations, maintained a larger distance from the predator, and required longer amounts of time to capture than littoral bluegill. When provided with simulated vegetation, largemouth bass spent longer amounts of time pursuing littoral bluegill and captured significantly fewer littoral bluegills than limnetic fish. Hence, morphological and behavioral variation in bluegills was linked to differential susceptibility to predation in open water and vegetated environments. Combined with previous studies, these findings show that morphological and behavioral adaptations enhance both foraging performance and predator evasiveness in different lake habitats.  相似文献   

4.
Predation is a common cause of early life stage mortality in fishes, with reduced risk as individuals grow and become too large to be consumed by gape-limited predatory fishes. Large-bodied species, such as sturgeon, may reach this size-refuge within the first year. However, there is limited understanding of what this size threshold is despite the value of this information for conservation management. We conducted laboratory-based predation experiments on juvenile green sturgeon, Acipenser medirostris, to estimate vulnerability to predation during outmigration from their natal reaches in California to the Pacific Ocean. Two highly abundant and non-native predatory fish species (largemouth bass, Micropterus salmoides, and striped bass, Morone saxatilis) were captured in the wild to be tested with developing juvenile green sturgeon from the UC Davis Green Sturgeon Broodstock Program. Experimental tanks, each containing five predators, received thirty prey for 24-hr exposures. Between sturgeon prey trials, predators were exposed to alternative prey species to confirm predators were exhibiting normal feeding behaviors. In addition to green sturgeon mortality data, trials were video recorded and predatory behaviors were quantified. Overall, these predator species displayed much lower rates of predation on juvenile green sturgeon than alternate prey. Predation decreased with green sturgeon size, and predation risk diminished to zero once sturgeon reached a length threshold of roughly 20–22 cm total length, or between 38% and 58% of predator total length. Behavioral analyses showed low motivation to feed on green sturgeon, with both predators attempting predation less frequently as sturgeon grew. Results of this study imply that optimizing growth rates for larval and juvenile sturgeon would shorten the time in which they are vulnerable to predation. Future experiments should assess predation risk of juvenile green sturgeon by additional predator species common to the Sacramento-San Joaquin watershed.  相似文献   

5.
Synopsis During their seaward migration, juvenile salmonids encounter structural and visual cover which varies between and within watersheds. In this study, the effects of two types of cover (turbidity and artificial vegetation) on the predation mortality of juvenile salmonids exposed to fish piscivores was investigated in outdoor concrete ponds. During experiments, adult coastal cutthroat trout, Oncorhynchus clarkii clarkii, were allowed to feed on juvenile salmonid prey — chinook salmon, O. tshawytscha, chum salmon, O. keta, sockeye salmon, O. nerka, and cutthroat trout — in separate trials. Daily instantaneous per capita predation rate was determined for each turbidity and vegetation treatment, within each trial. Mean predation rates varied between 1% and 76% daily. In the presence of cover, mean daily predation rates were 10–75% lower than those in controls (no vegetation and clear water), depending on prey species. Predation rates were significantly lower in the presence of vegetation cover and did not covary with prey size or species. The effects of turbidity were generally not significant and were not additive with the effects of vegetation. However, turbidity appeared to significantly reduce the effectiveness of vegetation as cover for juvenile chinook and sockeye salmon. We suggest that these two forms of cover do not affect risk of predation by fish piscivores to juvenile salmonids via the same mechanism.  相似文献   

6.
Introductions of non-native predatory fishes can be a major driver of aquatic biodiversity loss. The largemouth bass Micropterus salmoides (L.) has been introduced throughout much of the world, thereafter negatively affecting native faunal communities owing to its predatory impact. To investigate the environmental factors affecting the predatory performance of invasive bass, we examined the stomach contents and habitat characteristics of bass in 15 irrigation farm ponds in northeastern Japan. The food habits of the bass populations differed among the studied ponds: the predominant prey items were fishes among bass in seven of the ponds, whereas aquatic invertebrates (mainly insects and zooplankton) were the predominant taxa in the diets of bass in the eight remaining ponds, with the onset of piscivory related to body size. The results of multivariate analysis indicated that the extent to which the bass consumed fish was positively associated with fish prey abundance and negatively associated with percentage of aquatic vegetation coverage. We suggest that the extent of aquatic vegetation coverage strongly influenced the predation efficiency of bass in the ponds. These findings might be employed to assess a pond ecosystem’s vulnerability to invasive largemouth bass and to reduce the predator’s impact on native fish species by improvements to the habitat.  相似文献   

7.
8.
Eradicating or controlling invasive alien species has frequently had unintended consequences, such as proliferation of other invasive species or loss of ecosystem function. We explore this problem using a case study of a highly invasive floating aquatic macrophyte, water hyacinth (Eichhornia crassipes), in the Sacramento-San Joaquin Delta of California. We used 5 years of remote sensing data to perform change detection analysis to study plant community dynamics contemporaneous with changes in water hyacinth cover. Our results show that as water hyacinth cover decreased, submerged aquatic plant (SAP) cover increased and vice versa. This effect was strongest in large patches of water hyacinth. We found no evidence that the native floating aquatic species, pennywort (Hydrocotyle umbellata), benefitted from reducing cover of water hyacinth. In most years, pennywort cover either showed no trend or followed the same trajectory as water hyacinth cover. In this study a decrease in cover of water hyacinth most often resulted in colonization by SAP species with some habitat returning to open water.  相似文献   

9.
Trophic adaptability is a term used to describe feeding flexibility in fishes. Though a useful conceptual starting point, fishes often face constraints on their ability to switch prey that could limit feeding success even when prey switching is observed. We compared striped bass diet compositions summarized from previously published studies in California’s Sacramento-San Joaquin Delta during two time periods (1963–1964 and 2001–2003), which allowed us to evaluate trophic adaptability in San Francisco Estuary striped bass at multiple time scales, ranging from intra-annual to multidecadal. The Delta is the landward region of the San Francisco Estuary; over time between the study periods, the Delta underwent substantial changes in potential prey availability for striped bass. We found evidence for trophic adaptability in San Francisco Estuary (SFE) striped bass at all temporal scales examined. Despite this ability to adapt to changes in prey availability, the relative abundance and carrying capacity of young striped bass have declined. This decline has previously been associated with substantial declines in their dominant historical prey—mysid shrimp. Our results, coupled with these previous findings, indicate that trophic adaptability may have limited usefulness as a conceptual model to predict foraging success when other food web constraints are not considered. We speculate that this is particularly true in highly invaded ecosystems like the San Francisco Estuary because invading species often introduce substantial and permanent changes into food webs, decreasing the likelihood that a predator will find prey assemblages that fully replace historical prey assemblages.  相似文献   

10.
Juvenile common carp Cyprinus carpio were collected from 10 lakes with variable predator abundance over 4 months to evaluate if morphological defences increased with increasing predation risk. Cyprinus carpio dorsal and pectoral spines were longer and body depth was deeper when predators were more abundant, with differences becoming more pronounced from July to October. To determine if morphological plasticity successfully reduced predation risk, prey selection of largemouth bass Micropterus salmoides foraging on deep- and shallow-bodied C. carpio was evaluated in open and vegetated environments. Predators typically selected deep- over shallow-bodied phenotypes in open habitats and neutrally selected both phenotypes in vegetated habitats. When exposed to predators, shallow-bodied C. carpio phenotypes shoaled in open habitat, whereas deep-bodied phenotypes occupied vegetation. Although deep-bodied phenotypes required additional handling time, shallow-bodied phenotypes were more difficult to capture. These results suggest that juvenile C. carpio gradually develop deeper bodies and larger spines as predation risk increases. Morphological defences made it more difficult for predators to consume these prey but resulted in higher vulnerability to predation in some instances.  相似文献   

11.
Todd A. Crowl 《Hydrobiologia》1989,183(2):133-140
Laboratory experiments were performed in clear and turbid water to determine the effects of prey size, orientation, and movement on the reactive distance of largemouth bass (Micropterus salmoides) when feeding on crayfish (Procambarus acutus). In clear water, the reactive distance increased linearly with an increase in prey size, and prey movement resulted in a significant increase in the reactive distance. Prey orientation (head-on versus perpendicular) did not change the reactive distances. In moderately turbid water, the reactive distance did not increase with increased prey size, and prey movement did not result in any changes in the reactive distance. The absence of any effects of prey orientation in clear water or prey movement in turbid water is inconsistent with results from studies using different species (primarily planktivorous fish). I propose that largemouth bass change their foraging tactics as prey visibility changes. When prey are highly visible (low turbidity), predators attack (react) only after prey recognition, which is based on multiple cues such as prey size (length, width) and movement. When prey are less visible (high turbidity), predators attack immediately upon initial prey sighting, which does not depend on prey size or movement.  相似文献   

12.
Coarse woody habitat (CWH) may be a critical feature of lakes that influences fish distributions, movement patterns, and feeding habits. We used radio telemetry to examine the role of CWH in determining the movements of largemouth bass (Micropterus salmoides Lacepede) in the context of two whole-lake experiments that provided a gradient of four lake basins varying in natural and manipulated CWH. We also conducted diet studies on largemouth bass in these lakes to test for correlates among consumption rate and prey selectivity with bass behavior. Our results indicated that largemouth bass in basins with lower CWH abundances had larger home ranges, spent more time in deep water, were more selective predators, and showed lower consumption rates. Largemouth bass in basins with higher CWH abundances showed the opposite patterns. Low CWH abundances were correlated with a shift in largemouth bass foraging behavior from sit-and-wait to actively searching. This increased activity, coupled with the potential decline of prey fish species in the absence of CWH, may decrease largemouth bass growth potential regardless of the prey type consumed. Our results suggest that lakeshore residential development and associated removals of CWH from lakes may influence fish behavior, while CWH augmentation may reverse some of those changes. Handling editor: Steven Declerck  相似文献   

13.
Yasugi M  Hori M 《Zoological science》2011,28(12):869-874
The predator-prey relationship between largemouth bass, Micropterus salmoides, and freshwater goby, Rhinogobius spp., in Lake Biwa, Japan, was examined with respect to their morphological antisymmetry (laterality). Largemouth bass and Rhinogobius gobies exhibited lateral dimorphism in the height of the mandible and the length of the dentary, respectively. Populations of both species were composed of both left-developed and right-developed individuals. Each predation event was categorized as either cross-predation (a predator caught prey of the opposite morph) or parallel-predation (a predator caught prey of the same morph). Stomach contents analysis revealed that cross-predation events predominated over parallel-predation. Annual sampling for eight years demonstrated that in both largemouth bass and Rhinogobius gobies, the ratio of right-developed individuals in the population fluctuated temporally around 0.5. As the predominance of cross-predation was found in the relationship between the exotic largemouth bass and an endemic goby, the predominance may be caused by a kinematical interplay at each predation event.  相似文献   

14.
Largemouth bass Micropterus salmoides Lacepède growth (in length) increased an average of 14% and bioenergetics modeling predicted a 38% increase in total annual food consumption following a large-scale reduction of hydrilla Hydrilla verticillata L.f. Royle in Spring Creek, a 2,343-ha embayment of Lake Seminole, Georgia. Coverage of submersed aquatic vegetation (SAV) declined from 76% to 22% in 1 year due to a drip-delivery fluridone treatment. In contrast, largemouth bass growth only increased an average of 4% and bioenegetics modeling predicted a 13% increase in total food consumption over the same time period in the Chattahoochee River embyament, where SAV coverage naturally declined from 26% to 15%. Diets were collected from a total of 4,409 largemouth bass over a 2.5-year period in the two embayments; the primary diet item (by weight) for largemouth bass in both embayments was sunfish (mostly Lepomis spp.). Diets before and after SAV reduction were generally similar for fish greater than stock-size (≥203 mm) in the Spring Creek arm; however, fewer invertebrates were consumed after SAV reduction. Low diet similarity was observed in smaller fish, caused by a decline in consumption of grass shrimp and sunfishes and an increase in use of damselflies, shiners Notropis spp., and topminnows Fundulus spp. after SAV reduction. Diets were similar between the same time periods for all sizes of fish in the Chattahoochee River arm. These results agreed with many laboratory results describing the effects of aquatic plant density on largemouth bass food consumption and growth, and demonstrated that increased predation efficiency resulting from decreased plant abundance was likely a stronger factor determining growth rates than any potential diet shift that may occur as a result in vegetation decline.  相似文献   

15.
The non-native peacock bass (Cichla kelberi) is causing freshwater fish extinctions in the tropical regions around the world, but there are very few studies on its interaction with native species. This study, based on a mesocosm experiment, examined direct and indirect effects of a non-native peacock bass on the native prey in Paraná River, Brazil, and tested whether these effects were mitigated by aquatic vegetation. Feeding activity of most prey was unaffected by the presence of peacock bass. All prey were consumed in the absence of vegetation; whereas a marginally significant decrease in mortality was observed in the vegetated habitats. Overall, peacock bass had minor indirect effects on prey foraging, but very significant direct effects on prey survival. As aquatic plants provide very limited protection to native prey, vegetated habitats are unlikely to slow down the decline in biodiversity resulting from this invasive species and conservation measures may need to consider other ways to ensure survival of the source populations.  相似文献   

16.
The distribution and behavior of Florida largemouth bass, Micropterus salmoides floridanus, and their main prey (sunfish, genus Lepomis, and the cichlid Tilapia mariae) were studied in southern Florida to determine how fish behave in the simplified habitats found in channelized rivers. Time budgets were constructed from focal animal observations on 69 bass. Patterns of behavior associated with hunting were performed during a significantly higher proportion of the time when bass were in vegetated habitats. Scan samples of the behavior of 236 observed bass revealed that hunting was more common in areas of high structural complexity. Only 38% of observed bass were solitary, with the majority occurring in groups with either conspecifics or in mixed-species groups with similar sized bluegill sunfish, Lepomis macrochirus. Largemouth bass (n=1014) and sunfish (n=1372) were significantly more abundant in areas with vegetation and were almost entirely absent from the water column in the center of the canal. All species of fish avoided the water column, where currents were swift and no cover was available. The structure of the habitat appears to be important in the way largemouth bass organize their activity patterns. This suggests that habitat availability in channelized rivers significantly influences important behaviors such as hunting, thus potentially altering energy budgets and population dynamics of both predator and prey.  相似文献   

17.
In California’s Sacramento-San Joaquin estuary, environmental protection and habitat restoration efforts directed at a threatened native osmerid, the delta smelt (Hypomesus transpacificus), are complicated by the presence of a morphologically similar non-native congener, the wakasagi (H. nipponensis), transported to the estuary from upstream reservoirs. In order to better define delta smelt critical habitat and to evaluate the potential for habitat overlap by these two species, we compared the tolerances of the two species to temperature, salinity, and water velocity, environmental factors that vary spatially and temporally within the estuary. For fishes acclimated to 17°C and fresh water (0 ppt), we measured critical thermal maxima and minima, chronic upper salinity tolerance limits, and critical swimming velocities. Wakasagi had higher critical thermal maxima (29.1°C vs. 25.4°C for delta smelt), lower critical thermal minima (2.3°C vs. 7.5°C for delta smelt), higher upper salinity tolerances (26.8 ppt vs. 19.1 ppt for delta smelt), and swam faster (for 6–6.9 cm SL fish, 43.3 cm s–1 vs. 28.2 cm s–1 for delta smelt) than delta smelt. This suggests that the wide seasonal and year-to-year fluctuations in temperature, salinity, and flow typical in the estuary would not exclude wakasagi, although their eggs and larvae may be less tolerant. With respect to these factors, the native delta smelt may be at a physiological disadvantage, particularly in habitats with suboptimal environmental conditions, and may be excluded from shallow-water habitat restoration sites, which are characterized by poor circulation, low flows, and more environmentally extreme conditions. The low abundance of wakasagi in the estuary recorded to date may indicate that factors other than temperature, salinity, and flow determine wakasagi distribution. Received: 25 August 1999 / Accepted: 22 November 1999  相似文献   

18.
Synopsis Effects of water depth and cover availability on predation rates by adult rock bass, Ambloplites rupestris, on juvenile central stoneroller, Campostoma anomalum, pumpkinseed, Lepomis gibbosa, and fantail darter, Etheostoma flabellare, were measured in a laboratory stream. A predation rate experiment and a prey activity experiment were conducted. In the first experiment, each prey type shared experimental chambers with predatory rock bass under all combinations of two depths (shallow and deep) and two cover levels (absent and present). Predation rates after 72 h were greater in deep (35–38 cm) than in shallow (7–10 cm) water for fantail darter and two sizes of central stoneroller, but not for pumpkinseed. Presence of cover (opaque plastic tubes) on the stream bottom had no direct effect on predation rates, which were higher for pumpkinseed and small stoneroller (35–64 mm total length) than for fantail darter and large stoneroller (70–89 mm total length). In the second experiment, diel patterns of small stoneroller activity were monitored under all combinations of two water depths and three levels of predation risk. Small stonerollers were more active during the day and in the absence of rock bass, but were not affected directly by water depth. My results suggest that effects of habitat features (e.g., depth, cover) on predator-prey interactions vary according to the natural history and behavior of particular prey and predators. Future research should integrate habitat-specific responses of prey to predation risk into models that predict the distribution of prey among available habitats.The unit is jointly supported by the U.S. Fish and Wildlife Service, the Virginia Department of Game and Inland Fisheries, the Wildlife Management Institute, and Virginia Polutechnic Institute and State University.  相似文献   

19.
F.P. Gelwick 《Oecologia》2000,125(4):573-583
Non-lethal effects of predators on prey behavior can mediate trophic cascades, but the extent of effects depends on habitat characteristics and risk sensitivity of prey. Furthermore, predation risk for stream organisms varies along the depth gradient and strongly influences their behavior. Grazing minnows (Campostoma anomalum) and crayfish (Orconectes virilis) are both prey for largemouth bass (Micropterus salmoides) in streams, but differ in their predator-avoidance behavior. This study contrasts the effects and mechanisms of non-lethal trophic cascades on the spatial distribution of filamentous green algae among stream pools and along a depth gradient within pools. Presence/absence of a largemouth bass was crossed with four combinations of the two grazer species (0 grazers, 30 minnows, 30 crayfish, and 15 each) in outdoor, experimental streams. Grazer densities were maintained by restocking. I used geostatistics to quantify spatial patterns of predator and grazer habitat use, height of filamentous algae in the water column, and spatial covariation of water depth with algal height, and depth with grazer habitat use. In streams with only minnows, bass were sedentary, and hid within tall algae in a single "bass pool". In pools with grazed algae, bass actively pursued prey within and among pools and used deeper water. This set up a hierarchy of risk to grazers along the depth gradient from bass in deep water to potential risk from terrestrial predators in shallow water. Thus, minnows were more sensitive than crayfish to predation risk from bass, but less sensitive than crayfish to risk from terrestrial predators. Minnows mediated cascades at the scale of whole pools by avoiding "bass pools", but only if crayfish were absent. Crayfish avoided potential interactions both with terrestrial predators and bass by grazing and burrowing in deeper water at night (when bass were inactive), and by hiding in burrows during daytime. Crayfish without burrows avoided bass and crayfish defending burrows by using shallow edges of pools as corridors, but did not graze there. Thus, crayfish-mediated cascades were limited to pool edges. Effects of grazer identity may extend to other consumers via modification of risk for biota that use filamentous algae as either foraging or refuge habitat.  相似文献   

20.
We sampled 11 sites in the southern Sacramento-San Joaquin Delta from 1992–1999, to characterize fish communities and their associations with environmental variables. Riparian habitats were dominated by rock-reinforced levees, and large water diversion facilities greatly influenced local hydrodynamics and water quality. We captured 33 different taxa, only eight of which were native. None of the native species represented more than 0.5% of the total number of individuals collected. The abundance of native species was consistently low but typically peaked during high outflow periods. Fish communities were predominantly structured along environmental gradients of water temperature and river flow. Native species (tule perch, Hysterocarpus traski, & Sacramento sucker, Catostomus occidentalis) were associated with conditions of high river flow and turbidity, while the majority of the non-native species were associated with either warm water temperature or low river flow conditions. The exceptions were the non-native striped bass, Morone saxatilis, and white catfish, Ameiurus catus, which were positively associated with relatively high river flow. Variation in fish community structure was greater among river locations within years than within river locations among years, thus fish communities at each river location were consistently different each year. Differences in fish communities among river locations were correlated with river flow and turbidity. We predict that the fish communities of this region will remain numerically dominated by non-native species if the environmental conditions we observed persist in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号