首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Little is known of the mechanisms employed by woody plants to acquire key resources such as water and nutrients in hyperarid environments. For phreatophytic plants, deep roots are necessary to access the water table, but given that most nutrients in many desert ecosystems are stored in the upper soil layers, viable shallow roots may be equally necessary for nutrient uptake. We sought to better understand the interaction between water and nutrient uptake from soil horizons differing in the relative abundance of these resources. To this end, we monitored plant water and nutrient status before and after applying flood irrigation to four phreatophytic perennial plant species in the remote hyperarid Taklamakan desert in western China. Sap flow in the roots of five plants of the perennial desert species Alhagi sparsifolia Shap., Karelina caspica (Pall.) Less., Calligonum caput medusea Schrenk, and Eleagnus angustifolia Hill. was monitored using the heat ratio method (HRM). Additionally we measured predawn and midday water potential, foliar nitrate reductase activity (NRA), xylem sap nutrient concentration and the concentration of total solutes in the leaves before, 12 and 96 h after flooding to investigate possible short-term physiological effects on water and nutrient status. Rates of sap flow measured during the day and at night in the absence of transpiration did not change after flooding. Moderately high rates of sap flow (HRM heat pulse velocity, 5–25 cm h−1) detected during the day in soils that had a near zero water content at the surface indicated that all species had contact to groundwater. There was no evidence from sap flow data that plants had utilised flood water to increase maximum rates of transpiration under similar climatic conditions, and there was no evidence of a process to improve the efficiency of water or nutrient uptake, such as hydraulic redistribution (i.e. the passive movement of water from moist soil to very dry soil via roots). Measurements of plant water status, xylem sap nutrient status, foliar NRA and the concentration of osmotically active substances were also unaffected by flood irrigation. Our results clearly show that groundwater acts as the major source of water and nutrients for these plants. The inability of plants to utilise abundant surface soil–water or newly available nutrients following irrigation was attributed to the absence of fine roots in the topsoil layer.  相似文献   

2.
1. Constant-power heat-balance sap flow gauges were used to compare sap flow in vertical and lateral roots of Grevillea robusta trees growing without access to ground water at a semiarid site in Kenya.
2. Reversal of sap flow occurred when root systems crossed gradients in soil water potential. Measurement of changes in the direction of flow was possible because of the symmetrical construction of the sap flow gauges; gradients in temperature across the gauges, and thus computed rates of sap flow, changed sign when reverse flow occurred.
3. Reverse flow in roots descending vertically from the base of the tree occurred, while uptake by lateral roots continued, when the top of the soil profile was wetter than the subsoil. The transfer of water downwards by root systems, from high to low soil water potential, was termed 'downward siphoning'; this is the reverse of hydraulic lift.
4. Downward siphoning was induced by the first rain at the end of the dry season and by irrigation of the soil surface during a dry period.
5. Downward siphoning may be an important component of the soil water balance where there are large gradients in water potential across root systems, from a wet soil surface downwards. By transferring water beyond the reach of shallow-rooted neighbours, downward siphoning may enhance the competitiveness of deep-rooted perennials.  相似文献   

3.
Maintaining the activity and function of the shallow root system of plants is essential for withstanding drought stress, but the associated mechanism is poorly understood. By investigating sap flow in 14 lateral roots (LRs) randomly selected from trees of a Chinese white poplar (Populus tomentosa) plantation receiving three levels of irrigation, an unknown root water transport mode of simultaneous daytime bi-directional water flow was discovered. This mode existed in five LRs confined to the surface soil without attached sinker roots. In the longer term, the bi-directional water flow was correlated with the soil water content. However, within the day, it was associated with transpiration. Our data demonstrated that bi-directional root sap flow occurred during the day, and was driven by evaporative demand, further suggesting the existence of circumferential water movement in the LR xylem. We named this phenomenon evaporation-driven hydraulic redistribution (EDHR). A soil-root water transport model was proposed to encapsulate this water movement mode. EDHR may be a crucial drought-tolerance mechanism that allows plants to maintain shallow root survival and activity by promoting root water recharge under extremely dry conditions.  相似文献   

4.
介绍了Granier热消散探针在树干液流测定中的工作原理,并利用该系统长期监测广东鹤山马占相思林14株样树的液流密度,分析了树木个体内和个体之间液流密度的差异、整树和林段水分利用的量化特征.由于树木边材结构以及周围微环境的差别,树木内和个体间的液流密度差异非常明显,变异系数的平均值分别为15.51%-37.26%、37.46%-50.73%.尽管液流密度的差异较大,但同一株树木不同方位的液流密度之间却呈现明显的线性相关(p<0.0001),这是重要的特征值,使得只需测定某一方位的液流密度经尺度外推计算整树和林段蒸腾成为可能.树木液流对环境因子响应的变化规律取决于所参照的时间尺度,日变化主要受光辐射、水汽压差等气候因子的控制,而土壤水份对液流的季节变化影响较大.形态特征明显影响树木的液流,高大树木由于边材较厚、树干粗壮和冠幅较宽而承载较多的辐射能量,因而水分蒸腾较高.对树木液流密度在径向和方位上进行适当的整合,可较准确地计算整树和林段蒸腾.由液流估测的马占相思整树和林段蒸腾的结果显示,该群落的水分利用在时间和空间上均有明显的分化.  相似文献   

5.
A novel technique for the physico‐chemical analysis of xylem sap by underwater access to the sapwood of trees is described. In situ measurements of dissolved oxygen in the sapwood are performed by combining this technique with a novel optical method for oxygen detection. In early spring, the oxygen concentration of the sapwood of Betula pendula was in the range of 80–230 µmol O2 L?1, corresponding to an oxygen deficit of 40–75% of air saturation. Oxygen concentration maxima and minima occurred early in the morning and in the afternoon, respectively, whereas xylem sap temperatures showed the reverse pattern. In the sapwood, hypoxia increased from the beginning of bud break until frondescence, when a deficit of 86% of air saturation marked the upper limit of oxygen depletion. There seemed to be no relationship between daily variations of oxygen concentration and xylem sap pressure. In summer, sap flow was a major determinant for the diurnal variation of dissolved oxygen concentration. Oxygen supply to the sapwood was determined by both radial influx into the trunk through intercellular gas spaces and transport of dissolved oxygen via xylem sap flow. Radial influx seemed to be favoured during night‐time, when the trunk was warmer than ambient air. During daytime, the hypoxia of the sapwood rose and increased sharply in the evening, when sap flow velocity approximated zero. High temperature in the sapwood enhanced the respiratory oxygen consumption of the wood parenchyma while the supply of dissolved oxygen via the transpiration stream became ineffective.  相似文献   

6.
为确定毛白杨(Populus tomentosa)根系是否存在水力再分配现象,并探究其发生特征与影响因子,该研究以四年生毛白杨为研究对象,利用热比率法对3株样树的共计7条侧根(R1–R7)进行长期液流监测,并对土壤水分以及气象因子进行同步测定。结果显示:毛白杨存在两种水力再分配模式,分别为干旱驱动的水力提升和降雨驱动的水力下降,水力再分配的发生模式与特征受侧根分布深度与直径大小的影响。在整个生长季尺度上,毛白杨根系再分配的水量较低;但在极端干旱条件下,部分侧根再分配的水量可达其日总液流量的64.6%,表明水力再分配会为干旱侧根提供大量水分。根系吸水与气象-土壤的耦合因子(太阳辐射(Rs)×土壤含水率(SWC)、水汽压亏缺(VPD)×SWC、参考蒸散发(ETo)×SWC)间存在显著相关关系,但水力再分配与所选因子基本不相关。此外,毛白杨浅层根中存在特殊的日间逆向液流现象,其液流量最高可占日液流总量的79.2%(R1)到90.7%(R2),该现象可能对浅层根系抗旱起到重要作用。  相似文献   

7.
Xylem sap composition of spruce is influenced by several factors, such as the sampled organ, the sampling period, the availability of soil nutrients, and the soil water potential. Based on literature data and ongoing investigations carried out with adult trees, we present an overview on the main factors influencing xylem sap concentrations of Norway spruce. Direct measurements of nutrient fluxes in the xylem sap are then used to suggest a general scheme of mineral element cycling within adult trees. In Norway spruce (Picea abies Karst.), nutrient concentration in the xylem sap was higher in twigs and fine roots compared to the bottom of the trunk, the highest concentrations beeing observed in spring during the shoot elongation. Xylem sap concentrations were higher in spruce growing at nutrient rich sites than at poor sites. The combination of twig and trunk xylem sap analysis, together with xylem flow measurements in the trunk during the course of a vegetation period allowed the quantification of mineral fluxes via xylem sap flow in the trunk and twigs. These results were compared to gross mineral uptake measurements at the same site. Ca flux in the trunk xylem sap was lower than the gross uptake of Ca. Mg flux in trunk sap was approximately equivalent to Mg gross uptake whereas P and K fluxes in trunk sap were much higher than the gross uptake. Fluxes of Ca, Mg, K and P in the twig sap were much higher than that in trunk sap. Data suggest that internal cycling is responsible for a large part of the nutrient fluxes in the xylem sap of the crown. Xylem sap composition thus appears to be a tool which can complement other sources of information on mineral uptake and cycling in adult spruce  相似文献   

8.
The aim of this study was to identify the sources and depth of water uptake by 15-years old Quercus suber L. trees in southern Portugal under a Mediterranean climate, measuring δ18O and δD in the soil–plant-atmosphere continuum. Evidence for hydraulic lift was substantiated by the daily fluctuations observed in Ψs at 0.4 and 1 m depth and supported by similar δ18O values found in tree xylem sap, soil water in the rhizosphere and groundwater. From 0.25 m down to a depth of 1 m, δD trends differed according to vegetation type, showing a more depleted value in soil water collected under the evergreen trees (−47‰) than under dead grasses (−35‰). The hypothesis of a fractionation process occurring in the soil due to diffusion of water vapour in the dry soil is proposed to explain the more depleted soil δD signature observed under trees. Hydraulically lifted water was estimated to account for 17–81% of the water used during the following day by tree transpiration at the peak of the drought season, i.e., 0.1–14 L tree−1 day−1. Significant relationships found between xylem sap isotopic composition and leaf water potential in early September emphasized the positive impact of the redistribution of groundwater in the rhizosphere on tree water status.  相似文献   

9.
Redistribution of soil water by lateral roots mediated by stem tissues   总被引:5,自引:0,他引:5  
Evidence is increasing to suggest that a major activity of roots is to redistribute soil water. Roots in hydraulic contact with soil generally either absorb or lose water, depending on the direction of the gradient in water potential between root and soil. This leads to phenomena such as "hydraulic lift" where dry upper soil layers drive water transfer from deep moist layers to the shallow rhizosphere and, after rain or surface irrigation, an opposite, downward water transfer. These transport processes appear important in environments where rainfall is strongly seasonal (e.g. Mediterranean-type climates). Irrigation can also induce horizontal transfers of water between lateral roots. Compared with transpiration, the magnitudes, pathways, and resistances of these redistribution processes are poorly understood. Field evidence from semi-arid eucalyptus woodlands is presented to show: (i) water is rapidly exchanged among lateral roots following rain events, at rates much faster than previously described for other types of hydraulic redistribution using sap flow methods; (ii) large axial flows moving vertically up or down the stem are associated with the horizontal transfer of water between roots on opposite sides of the stem. It appears that considerable portions of the stem axis become involved in the redistribution of water between lateral roots because of partial sectoring of the xylem around the circumference of these trees.  相似文献   

10.
Aims Nighttime sap flow of trees may indicate transpiration and/or recharge of stem water storage at night. This paper deals with the water use of Acacia mangium at night in the hilly lands of subtropical South China. Our primary goal was to reveal and understand the nature of nighttime sap flow and its functional significance.Methods Granier's thermal dissipation method was used to determine the nighttime sap flux of A. mangium. Gas exchange system was used to estimate nighttime leaf transpiration and stomatal conductance of studied trees.Important findings Nighttime sap flow was substantial and showed seasonal variation similar to the patterns of daytime sap flow in A. mangium. Mean nighttime sap flow was higher in the less precipitation year of 2004 (1122.4 mm) than in the more precipitation year of 2005 (1342.5 mm) since more daytime transpiration and low soil water availability in the relatively dry 2004 can be the cause of more nighttime sap flow. Although vapor pressure deficit and air temperature were significantly correlated with nighttime sap flow, they could only explain a small fraction of the variance in nighttime sap flow. The total accumulated water loss (E L) by transpiration of canopy leaves was only ~2.6–8.5% of the total nighttime sap flow (E t) during the nights of July 17–18 and 18–19, 2006. Therefore, it is likely that the nighttime sap flow was mainly used for refilling water in the trunk. The stem diameter at breast height, basal area and sapwood area explained much more variance of nighttime water recharge than environmental factors and other tree form features, such as tree height, stem length below the branch, and canopy size. The contribution of nighttime water recharge to the total transpiration ranged from 14.7 to 30.3% depending on different DBH class and was considerably higher in the dry season compared to the wet season.  相似文献   

11.
Deep water uptake and hydraulic redistribution (HR) are important processes in many forests, savannas and shrublands. We investigated HR in a semi‐arid woodland above a unique cave system in central Texas to understand how deep root systems facilitate HR. Sap flow was measured in 9 trunks, 47 shallow roots and 12 deep roots of Quercus, Bumelia and Prosopis trees over 12 months. HR was extensive and continuous, involving every tree and 83% of roots, with the total daily volume of HR over a 1 month period estimated to be approximately 22% of daily transpiration. During drought, deep roots at 20 m depth redistributed water to shallow roots (hydraulic lift), while after rain, shallow roots at 0–0.5 m depth redistributed water among other shallow roots (lateral HR). The main driver of HR appeared to be patchy, dry soil near the surface, although water may also have been redistributed to mid‐level depths via deeper lateral roots. Deep roots contributed up to five times more water to transpiration and HR than shallow roots during drought but dramatically reduced their contribution after rain. Our results suggest that deep‐rooted plants are important drivers of water cycling in dry ecosystems and that HR can significantly influence landscape hydrology.  相似文献   

12.
 树体储水在树木水分传输中具有重要的作用, 不仅为蒸腾提供水分来源, 还具有缓冲作用, 可防止木质部导管水势过低以至于水分传输的失败。树体储水动态及其利用的研究对于认识树木对水分胁迫的响应机制具有重要意义。该研究构建了包含树体储水释放-补充作用的树干水分传输模型, 可模拟计算林分小时尺度的冠层蒸腾、边材液流、树体储水与木质部导管水流交换过程, 并以六盘山北侧的华北落叶松(Larix principis-rupprechtii)人工林为例, 在林分水平分析树体储水利用及其 与土壤水分和潜在蒸散之间的关系。检验结果表明, 该模型能够精确地模拟出林分边材液流的日变化特征, 模拟与观测的小时液流速率决定系数R2为0.91 (n = 2 352)。模拟结果表明, 在典型晴朗天气下, 在日出时树体储水利用启动, 至9:00左右达到峰值(0.14 mm?h–1), 午间降至0, 下午降为负值直至午夜, 即进入树体补水阶段; 树体储水日使用量(DJz)为0.04–0.58 mm?d–1, 与日蒸腾量(DTr)成正相关(R2 = 0.91), 对蒸腾的贡献为25.6%。分析结果表明, 当潜在蒸散(ETp)低于4.9 mm?d–1时, ETp是华北落叶松树体储水利用的主要驱动因子, DJz与ETp成正相关(R2 = 0.68); 当ETp高于4.9 mm?d–1时, DJz随着ETp的增加呈现降低趋势; DJz与土壤水势没有显著相关关系(p > 0.05), 但最大树体储水日使用量(DJzmax)与土壤水分含量成正相关(R2 = 0.79), 说明土壤水分是树体储水利用的限制因子。  相似文献   

13.
 介绍了热扩散式液流探针的工作原理及利用液流探针测定树木边材液流速率的方法。利用边材液流探针和多种气象因子传感器及数据采集系统组成的微型气象站,通过对北京西山地区油松(Pinus tabulaeformis)、栓皮栎(Quercus variabilis)混交林林分平均木树干边材液流速率及风速、有效辐射和空气温度、空气相对湿度的日变化和连日变化的测定和分析,揭示了5月干旱季节两树种蒸腾耗水的日变化和连日变化规律,以及栓皮栎树干基部和树冠大枝边材液流的差异,并进行了理论推导,同时分析了液流速率的波动规律与主要气象因素波动的相关性。  相似文献   

14.
The thermal dissipation probe was described in the early 1930s for the demonstration of a volume and mass flow of sap in the conductive elements of the xylem in trees. It was subsequently developed further and is now widely used in physiological ecology including measurements in the field. Thermal dissipation demonstrates the occurrence of sap flow and allows determination of its velocity. Here we report simultaneous continuous measurements of sap flow using the thermal dissipation technique and of transpiration by infrared gas analysis for diurnal and annual cycles in a deciduous and an evergreen oak tree, Quercus robur L. and Quercus turneri Willd., respectively, in a deciduous and an evergreen conifer, Larix decidua Mill. and Pinus griffithii McClell., respectively, and the host/mistletoe consortium of the deciduous linden Tilia mandschurica Rupr. & Max. and the evergreen Viscum album L. We show (1) that in diurnal cycles sap flow closely follows dynamic changes of the rate of transpiration elicited by daily fluctuations of weather parameters (sunshine, cloudiness, air temperature and humidity), (2) that in annual cycles sap flow reflects autumnal yellowing and shedding of leaves of the deciduous trees. We report for the first time comparative measurements of sap flow towards mistletoe shoots and host branches in a parasite/host consortium. This demonstrates (3) that mistletoes maintain considerably larger sap flow rates in their xylem conduits than the adjacent host branches dragging the transpiration stream of their host towards their own shoots. We also show (4) that even after the deciduous host has shed its leaves and itself does not transpire any more the evergreen mistletoe towards its shoots can maintain the persistence of a continuous sap flow via the stem and branches of the host as long as frost does not prevent that. The work presented underlines the contention that transpiration is the driving force for sap flow with continuous files of water in the xylem. It shows for the first time that mistletoes direct the flow of water through host roots and stems towards its own shoots by not only performing stronger transpiration as it is known from the literature but also by maintaining larger sap flow rates in the xylem conduits of its stems.  相似文献   

15.
Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single individual of Anacardium excelsum, Ficus insipida, Schefflera morototoni, and Cordia alliodora during two consecutive dry seasons. Vessel lumen diameter and vessel density did not exhibit a consistent trend axially from the base of the stem to the base of the crown. However, lumen diameter decreased sharply from the base of the crown to the terminal branches. The ratio of vessel lumen area to sapwood cross-sectional area was consistently higher at the base of the crown than at the base of the trunk in A. excelsum, F. insipida and C. alliodora, but no axial trend was apparent in S. morototoni. Radial profiles of the preceding wood anatomical characteristics varied according to species and the height at which the wood samples were obtained. Radial profiles of sap flux density measured with thermal dissipation sensors of variable length near the base of the crown were highly correlated with radial profiles of specific hydraulic conductivity (k(s)) calculated from xylem anatomical characteristics. The relationship between sap flux density and k(s) was species-independent. Deuterium oxide (D(2)O) injected into the base of the trunk of the four study trees was detected in the water transpired from the upper crown after only 1 day in the 26-m-tall C. alliodora tree, 2 days in the 28-m-tall F. insipida tree, 3 days in the 38-m-tall A. excelsum tree, and 5 days in the 22-m-tall S. morototoni tree. Radial transport of injected D(2)O was detected in A. excelsum, F. insipida and S. morototoni, but not C. alliodora. The rate of axial D(2)O transport, a surrogate for maximum sap velocity, was positively correlated with the predicted sapwood k(s) and with tree height normalized by the relative diurnal water storage capacity. Residence times for the disappearance of the D(2)O tracer in transpired water ranged from 2 days in C. alliodora to 22 days in A. excelsum and were positively correlated with a normalized index of diurnal water storage capacity. Capacitive exchange of water between stem storage compartments and the transpiration stream thus had a profound influence on apparent rates of axial water transport, the magnitude of radial water movement, and the retention time in the tree of water taken up by the roots. The inverse relationship between internal water exchange capacity and k(s) was consistent with a trade-off contributing to stability of leaf water status through highly efficient water transport at one extreme and release of stored water at the other extreme.  相似文献   

16.
Sap flows in the xylem of plant roots in response to gradientsin water potential, either between soil and atmosphere (transpiration)or soil layers of different moisture content (termed hydraulicredistribution). The latter has the potential to influence waterbudgets and species interactions, but we lack information forall but a few plant communities. We combined heat pulse measurementsof sap flow with dye and isotope tracing techniques to gaugethe movement of xylem sap within, and exudation from, rootsof Banksia prionotes (Lindley). We demonstrated ‘ hydrauliclift’ during the dry season and provide some evidencethat extremely dry soils limit hydraulic lift. In addition wereport difficulties posed by spiralled xylem tissue in rootsfor the application of heat pulse techniques. Copyright 2000Annals of Botany Company Banksia prionotes, sap flow, hydraulic lift, heat ratio method, deuterium, stable isotopes, root architecture.  相似文献   

17.
树木胸径大小对树干液流变化格局的偏度和时滞效应   总被引:3,自引:0,他引:3  
通过分析具不同水力结构的马占相思、荷木和粉单竹液流变化格局的偏度和时滞,探讨液流的空间分布特征及对冠层蒸腾的影响。结果表明:荷木的液流格局偏度和时滞随树木胸径的增加呈减小的趋势,但马占相思由于冠层开阔和林分分化程度高而规律不明显,粉单竹液流偏度随胸径减少,由于冠幅较小,接受的光照较均匀,个体间的时滞差异不明显,但时滞值比胸径近似的荷木小。树干水分传输过程中存在液流再分配的现象,边材的导水效率可能是影响时滞的重要原因。冠层蒸腾的空间异质性与树木储存水有关,大树储存水较多,冠层蒸腾的异质性小;小树储存水较少,液流被优先分配到光照充足的东南方位,导致冠层蒸腾较高的异质性。旱季受土壤水分的限制,大树储存水对蒸腾的贡献大于湿季,而小树蒸腾由于受到储水容量的制约,储存水对蒸腾的贡献小于湿季。冠层接受光照的迟或早以及辐射量的大小是引起蒸腾时间变化格局和树干不同方位液流格局差异的重要原因,但液流的横向交换弱化了这种现象,往往是个体间的差异掩盖了方位的差异。湿季较小胸径的树木比偏值(枝下高与胸高处液流偏度的比值)大于旱季,而较大胸径的树木比偏值恰好相反,总体而言,比偏值随着胸径的增加而逐渐下降。  相似文献   

18.
为探讨树木结构与功能的关系,对华南地区常见8种树木边材的导管特征进行观察,并利用Granier热扩散探针法测量干、湿季树干的液流密度,分析导管特征与树干液流的关系。结果表明,除红锥(Castanopsis hystrix)有两种导管外,大叶相思(Acacia auriculaeformis)、荷木(Schima superba)、火力楠(Michelia macclurei)、藜蒴(C.fissa)、马占相思(A.mangium)、柠檬桉(Eucalyptus citriodora)、尾巨桉(E.urophylla×E.grandis)的导管类型单一。导管特征在种间存在明显差异,且导管长度、密度和孔径之间存在明显相关性,它们与标准化的边材面积呈现显著相关。湿季液流最大值与导管特征无明显相关性,但整树最大蒸腾速率与导管特征呈显著相关;树木的日蒸腾量与导管特征也有明显相关性。因此,树木的液流速率并不受树干的导管影响;而树干的导管孔径与边材面积间的负相关权衡机制,可以降低树种间由于导管孔径差异引起的树干的水分输送速率的差异性。  相似文献   

19.
We studied the tree access to deep water sources and the possibility of hydraulic lift from the deep roots of a Pinus nigra tree to the shallow soil layers in a Mediterranean forest of NE Spain. We also studied the use of hydraulically lifted water by neighboring trees, shrubs, and sprouts. We enriched the roots of a large P. nigra (10 m tall) with deuterium by accessing them from a below ground cave. During the next 3 days we measured stable deuterium isotopic composition of xylem sap, shoot predawn and midday water potentials, and the leaf δ13C and δ15N of the P. nigra tree, neighboring Quercus ilex ballota trees and sprouts, and Juniperus oxycedrus shrubs. The study was conducted both in dry summer and in wet spring. In summer, deuterated water absorbed by deep roots of P. nigra appeared in the stem water of neighboring plants and in surface soil. The most δD-enriched plant xylem sap was found in the enriched P. nigra tree, followed by the Q. ilex sprouts, the small Q. ilex trees and the surface soil (15 cm). All these trends disappeared in the wet spring season, when HDO only slightly appeared in the surface soil. The results show that the studied P. nigra tree accesses deep water source and conducts hydraulic lift in this Mediterranean forest in dry summer but not necessarily in wet spring.  相似文献   

20.
The redistribution of soil water by tree root systems   总被引:29,自引:0,他引:29  
Plant roots transfer water between soil layers of different water potential thereby significantly affecting the distribution and availability of water in the soil profile. We used a modification of the heat pulse method to measure sap flow in roots of Grevillea robusta and Eucalyptus camaldulensis and demonstrated a redistribution of soil water from deeper in the profile to dry surface horizons by the root system. This phenomenon, termed “hydraulic lift” has been reported previously. However, we also demonstrated that after the surface soils were rewetted at the break of season, water was transported by roots from the surface to deeper soil horizons – the reverse of the “hydraulic lift” behaviour described for other woody species. We suggest that “hydraulic redistribution” of water in tree roots is significant in maintaining root viability, facilitating root growth in dry soils and modifying resource availability. Received: 26 January 1998 / Accepted: 15 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号